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Patterns of relations

Leonid Zhukov

Global, statistical properties of the networks:
- average node degree (degree distribution)
- average clustering

- average path length

Local, per vertex properties:

- node centrality

- page rank

Pairwise properties:

- node equivalence

- node similarity

- correlation between pairs of vertices (node values)
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Structural equivalence

Definition
Structural equivalence: two vertices are structurally equivalent if
their respective sets of in-neighbors and out-neighbors are the

same

u, v, ul u2 vl v2 w
ul 0 0 1 1 O
uz 0 0 1 1 O
vi 0 0 O 1 1

Uz vz
v2 0 0 1 0 1
w 0 0 0 0 O

rows and columns of adjacency matrix of structurally equivalent
nodes are identical, “connect to the same neighbors”
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Structural equivalence

* |n order for adjacent vertices to be structurally equivalent, they
should have self loops.

® Sometimes called "strong structural equivalence”
e Sometimes relax requirements for self loops for adjacent nodes
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Structural similarity

Definition
Two nodes are similar to each other if they share many neighbors.
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Similarity measures

® Jaccard similarity

N (vi) NN ()]

J(vi,vj) = IN(vi) UN(v)]

e Cosine similarity (vectors in n-dim space)

.
V V; A
o(vi,vj) = cos(j) = o >k AikAgj

NS

® Pearson correlation coefficient:

= 2 A — < i) (Aik — (A))
LV Bk — A2 A — (A))?
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Similarity measures

e Unweighted undirected graph Ay = Ay, binary matrix, only 0
and 1

* > Ak =Y (A = ki - node degree
* > AiAy = (A?);j = nj - number of shared neighbors
e Cosine similarity (vectors in n-dim space)

nj
kiki

o(vi,v)) = cos(f) =

® Pearson correlation coefficient:

. kik

n J n
i = K2 12
Vh—#¢&—%
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Similarity matrix

Graph Node similarity matrix
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SimRank

® G-directed graph
® Two vertices are similar if they are referenced by similar vertices
® s(a,b) - similarity between a and b, I() - set of in-neighbours
C l(a) 1
s(a,b) = ZZ (li(a),li(b)), a#b
| i=1 j=1
s(a,a) =1

® Matrix notation:
C
Sij = s > AtiAmSkm
k.m

® |terative solution starting from sy (i, j) = ¢j
Jeh and Widom, 2002
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Degree correlation

Degree correlation is the likelyhood that nodes link to nodes with
similar or dissimilar nodal degree.

® Pearson degree correlation coefficient (—1 <r < 1)

cov 2 Ak — (k) (ki — (k)

Tvar Ak — (k)2
e Degree correlation matrix - fraction of edges connecting nodes
degrees k, k'
m(k, k")
€k =
m

® Degree correlation function

kon(K) = SOKP(KIK);  P(K k) = kK
0= SRRl PR =
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Degree correlation matrix

®) (e)

NEUTRAL

2
3

(@)

ASSORTATVE
DISASSORTATIVE

from A.L. Barabasi, 2016
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Degree correlation function
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from A.L. Barabasi, 2016
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Assortative and diassortative networks

e Assortative network (r > 0): hubs (high degree nodes) tend to
connect to hubs, low degree nodes to low degree nodes

e Disassortative network (r <0): high degree nodes connected to
low degree nodes, star-like structure

Assortative network (r > 0) Disassortative network (r < 0)
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Mixing patterns in networks

Network mixing patterns

® Assortative mixing, "like links with like”, attributed of
connected nodes tend to be more similar than if there were no
such edge

¢ Disassortative mixing, "like links with dislike”, attributed of

connected nodes tend to be less similar than if there were no
such edge

Vertices can mix on any vertex attributes (age, sex, geography in
social networks), unobserved attributes, vertex degrees

Examples:

assortative mixing - in social networks political beliefs, obesity, race
disassortative mixing - dating network, food web (predator/prey),
economic networks (producers/consumers)
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Assortative mixing

e Political polarization on Twitter: political retweet network ,red
color - “right-learning” users, blue color - “left learning” users

® Assortative mixing = homophily
Conover etal,, 2011
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Mixing by categorical attributes

Leonid Zhukov

Vertex categorical attribute (c; -label): color, gender, ethnicity

How much more often do attributes match across edges than
expected at random?

Modularity :
— 1 kk
g Me—{md _ 1 (A,.,. _ 2_n;> 5(ci )

m 2m 4
ij

m¢ - number of edges between vertices with same attributes
{m¢) - expected number of edges within the same class in
random network

Assortativity coefficient:

Q _Z <AI/ 2m) §(¢i, )

Qmax 2m — Z’J k’kfd(c,-, Cj)
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Mixing by scalar values

e \ertex scalar value (attribute) - x;

® How much more similar are attributes across edges than
expected at random?

® Average and covariance over edges

var = % ,-ZjAU(Xi — ()2 = o Zki(xi —(x))?
cov = % ZAU(X,' — () — ()
ij

e Assortativity coefficient

ovar i Ai(xi — (x))? - i (k;é,-j - %) XiXj

v Syl Wy W) Xy (A 5)
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Mixing by node degree

e Assortative mixing by node degree, x; < k;
Zij <Af] Qm) k k
Zij (ki(sij Qm) kikj

r =

® Computations:

51 = Ziki =2m
:Zik?
SSZZik?

Se = X Aikikj
® Assortatitivity coefficient

5eS1—S3
5351 — 53
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Random graph example

Random graph with 10, 000 nodes
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from A.L. Barabasi, 2016
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Friendship paradox

"On average, your friends are more popular, than you are”
® Average neighbour degree of a node with degree k

kon = > KP(K |K)
k/
® For uncorrelated network

R A .
= 2K =0 K =

® in random network

(k%) = (k) (1 + (k))
® in scale free networks
(k%) / (k) > (k)

We are more likely to be friends with hubs than with small-degree nodes,

because hubs have more friends than the small nodes.
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Typical network structure

Core-periphery structure of a network

image from J. Leskovec, K. Lang, 2010
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Graph cores

Definition
A k-core is the largest subgraph such that each vertex is connected

to at least k others in subset

v
corenness 1 @
v

'
| corenness 2

corenness3 @

Every vertex in k-core has a degree k; > k
(k + 1)-core is always subgraph of k-core
The core number of a vertex is the highest order of a core that contains

this vertex
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k-core decomposition

V. Batageli, M. Zaversnik, 2002

e If from a given graph G = (V, E) recursively delete all vertices,
and lines incident with them, of degree less than k, the
remaining graph is the k-core.
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K-cores

Zachary karate club: 1,2,3,4 - cores
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k-cores

k-cores: 1:1458, 2:594, 3:142, 4:12,5:6
k-shells: 1:864-red, 2:452-pale green, 3:130-green, 5:6-blue, 6:6-purple
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