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Network models

Empirical network features:
• Power-law (heavy-tailed) degree distribution
• Small average distance (graph diameter)
• Large clustering coefficient (transitivity)

Generative models:
• Random graph model (Erdos & Renyi, 1959)
• Preferential attachment model (Barabasi & Albert, 1999)
• Small world model (Watts & Strogatz, 1998)
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Motivation

• Citation networks
• Collaboration networks
• Web
• Social networks
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Motivation

• Citation networks
• Collaboration networks
• Web
• Social networks

Most of the networks we study are dynamic, they evolve over time,
expanding by adding new nodes and edges
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Preferential attachment model

Barabasi and Albert, 1999
Dynamic growth: start at t = 0with n0 nodes andm0 ≥ n0 edges

1. Growth
At each time step add a new node withm edges (m ≤ n0),
connecting tom nodes already in netwrok ki(i) = m

2. Preferential attachment
The probability of linking to existing node i is proportional to
the node degree ki

Π(ki) =
ki∑
i ki

after t timesteps: t+ n0 nodes,mt+m0 edges
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Preferential attachment model

Barabasi, 1999
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Preferential attachment

Continues approximation: continues time, real variable node
degree ⟨ki(t)⟩- expected value over multiple realizations
Time-dependent degree of a single node:

ki(t+ δt) = ki(t) +mΠ(ki)δt

dki(t)
dt

= mΠ(ki) = m
ki∑
i ki

=
mki
2mt

=
ki(t)
2t

node i is added at time ti: ki(ti) = m∫ ki(t)

m

dki
ki

=

∫ t

ti

dt
2t

Solution:

ki(t) = m
(
t
ti

)1/2
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Preferential attachement

ki(t) = m
(
t
ti

)1/2

;
dki(t)
dt

=
m
2

1√
tti
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Preferential attachement
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Preferential attachment

Time evolution of a node degree

ki(t) = m
(
t
ti

)1/2

Find probability P(k′ ≤ k) of a randomly selected node to have
k′ ≤ k at time t (fraction of nodes with k′ ≤ k ). Nodes with ki(t) ≤ k:

m
(
t
ti

)1/2

≤ k ⇒ ti ≥
m2

k2
t

Cumulative function:

F(k) = P(k′ ≤ k) =
n0 + t−m2t/k2

n0 + t
≈ 1− m2

k2

Distribution function:

P(k) =
d
dk

F(k) =
2m2

k3
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Preferential attachement

m
(
t
ti

)1/2

≤ k ⇒ ti ≥
m2

k2
t
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Preferential attachment vs random graph

BA : P(k) =
2m2

k3
, ER : P(k) =

⟨k⟩ke−⟨k⟩

k!
, ⟨k⟩ = pn
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Preferential attachment vs random graph
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Preferential attachment model

m = 1 m = 2 m = 3
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Growing random graph

1. Growth
At each time step add a new node withm edges (m ≤ n0),
connecting tom nodes already in network ki(i) = m

2. Attachment uniformly at random
The probability of linking to existing node i is

Π(ki) =
1

n0 + t− 1

Node degree growth:

ki(t) = m
(
1 + log

(
t
i

))
Node degree distribution function:

P(k) =
e
m

exp (− k
m
)
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Preferential attachment

• Power law distribution function:

P(k) =
2m2

k3

• Average path length (analytical result) :

⟨L⟩ ∼ log(N)/ log(log(N))

• Clustering coefficient (numerical result):

C ∼ N−0.75
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Non-linear preferential attachment

• Non-linear preferential attachment models:

Π(k) ∼ kα

• α = 0, no hubs, exponential dsitribution
• 0 < α < 1, sublinear, smaller hubs, stretched exponential
• α = 1, scale-free, hubs, power law
• α > 1, superlinear, super hubs, hubs-and-spoke
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Link selection model

Local growth mechanism:
• Growth: at each time step add a new node
• Link selection: select link at random and connect to one of two
nodes at the ends

Probability to connect to a node with degree k:

Π(k) =
kpk
⟨k⟩
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Copying model

Local growth mechanism:
• Random connection: with probability p connect to a random

node u
• Copying: with probability 1− p randomly choose an outgoing
link from u and connect to its target

Probability to connect to a node with degree k :

Π(k) =
p
n
+ (1− p)

k
2m
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Historical note

• Polya urn model, George Polya, 1923
• Yule process, Udny Yule, 1925
• Distribution of wealth, Herbert Simon,1955
• Evolution of citation networks, cumulative advantage, Derek
de Solla Price, 1976

• Preferential attachment network model, Barabasi and Albert,
1999

Local randommodels vs global optimization models
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Small world

Motivation: keep high clustering, get small diameter

Clustering coefficient C = 1/2
Graph diameter d = 8

Lecture 4 Higher School of Economics January 31, 2022 22 / 28



Small world

Watts and Strogatz, 1998

Single parameter model, interpolation between regular lattice and
random graph

• start with regular lattice with n nodes, k edges per vertex (node
degree), k << n

• randomly connect with other nodes with probability p, forms
pnk/2 ”long distance” connections from total of nk/2 edges

• p = 0 regular lattice, p = 1 random graph
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Small world

Watts, 1998
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Small world model

• Node degree distribution:
Poisson like

• Ave. path length ⟨L(p)⟩ :
p → 0, ring lattice, ⟨L(0)⟩ = n/2k
p → 1, random graph, ⟨L(1)⟩ = log(n)/ log(k)

• Clustering coefficient C(p) :
p → 0, ring lattice, C(0) = 3/4 = const
p → 1, random graph, C(1) = k/n
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Small world model

20% rewiring:
ave. path length = 3.58 → ave. path length = 2.32
clust. coeff = 0.49 → clust. coeff = 0.19
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Model comparison

Random BAmodel WS model Empirical networks

P(k) λke−λ

k! k−3 poisson like power law
C ⟨k⟩/N N−0.75 const large
⟨L⟩ log(N)

log(⟨k⟩)
log(N)

log log(N) log(N) small

Lecture 4 Higher School of Economics January 31, 2022 27 / 28



References

• Emergence of Scaling in Random Networks, A.L. Barabasi and
R. Albert, Science 286, 509-512, 1999

• Collective dynamics of small-world networks. Duncan J. Watts
and Steven H. Strogatz. Nature 393 (6684): 440-442, 1998

Lecture 4 Higher School of Economics January 31, 2022 28 / 28


