

Random graphs Network Science Lecture 3

Leonid Zhukov

lzhukov@hse.ru www.leonidzhukov.net/hse/2022/networks

National Research University Higher School of Economics School of Data Analysis and Artificial Intelligence, Department of Computer Science

Network models

Empirical network features:

- Power-law (heavy-tailed) degree distribution
- Small average distance (graph diameter)
- Large clustering coefficient (transitivity)

Generative models:

- Random graph model (Erdos & Renyi, 1959)
- "Small world" model (Watts & Strogatz, 1998)
- Preferential attachement model (Barabasi & Albert, 1999)

Random graph model

Graph $G\{E, V\}$, nodes n = |V|, edges m = |E| Erdos and Renyi, 1959.

Random graph models

- G(n,m) a randomly selected graph from the set of C_N^m graphs, $N=\frac{n(n-1)}{2}$, with n nodes and m edges
- G(n,p) each pair out of $N=\frac{n(n-1)}{2}$ pairs of nodes is connected with probability p,m random number

$$\langle m \rangle = p \frac{n(n-1)}{2}$$

$$\langle k \rangle = \frac{1}{n} \sum_{i} k_{i} = \frac{2\langle m \rangle}{n} = p (n-1) \approx pn$$

$$\rho = \frac{\langle m \rangle}{n(n-1)/2} = p$$

Random graph model G(n, p)

$$n = 12, p = 1/6$$

$$n = 100, p = 0.03$$

Random graph model G(n, p)

• In G(n, p) model, probability for a network to have m links is given by binomial distribution:

$$P(m) = C_N^m p^m (1-p)^{N-m}$$

where
$$N = \frac{n(n-1)}{2}$$

- p^m probability that m links are present $(1-p)^{N-m}$ probability that other links are not C_N^m number of ways to select m links out of all N, $C_N^m = \frac{N!}{m!(N-m)!}$
- expected number of links

$$\langle m \rangle = \sum_{m=0}^{N} mP(m) = pN = p\frac{n(n-1)}{2}$$

Degree distribution

• Probability that *i*-th node has a degree $k_i = k$ is given by Binomial distribution:

$$P(k_i = k) = P(k) = C_{n-1}^k p^k (1-p)^{n-1-k}$$

 p^k - probability that connects to k nodes (has k-edges) $(1-p)^{n-k-1}$ - probability that does not connect to any other node C_{n-1}^k - number of ways to select k nodes out of all to connect to, $C_{n-1}^k = \frac{(n-1)!}{k!(n-k-1)!}$

• Binomial distribution, when $\langle \mathbf{k} \rangle << N$ or $n \to \infty$ and $p \to 0$ at fixed $\langle \mathbf{k} \rangle$, is well approximated by Poisson distribution:

$$P(k) = \frac{\langle k \rangle^k e^{-\langle k \rangle}}{k!} = \frac{\lambda^k e^{-\lambda}}{k!}, \ \langle k \rangle = pn = \lambda$$

Poisson Distribution

$$P(k_i = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \ \lambda = \langle k \rangle = pn$$

Random graph

$$\langle \mathbf{k} \rangle = \mathbf{p}\mathbf{n} = 5$$

Random graph model

Consider $G_{n,p}$ as a function of p

- p = 0, empty graph $\langle k \rangle = 0$
- p = 1, complete (full) graph $\langle k \rangle = n 1$
- n_G -largest connected component, $s = \frac{n_G}{n}$

Phase transition

Let u – fraction of nodes that do not belong to GCC. The probability that a node does not belong to GCC

$$u = \frac{n - n_G}{n} = P(k = 0) + P(k = 1) \cdot u + P(k = 2) \cdot u^2 + P(k = 3) \cdot u^3 \dots =$$

$$= \sum_{k=0}^{\infty} P(k)u^k = \sum_{k=0}^{\infty} \frac{\lambda^k e^{-\lambda}}{k!} u^k = e^{-\lambda} e^{\lambda u} = e^{\lambda(u-1)}$$

Let s -fraction of nodes belonging to GCC (size of GCC)

$$u = e^{\lambda(u-1)}$$

$$s = 1 - u, 1 - s = e^{-\lambda s}$$

$$\lambda=pn=\langle \mathbf{k}
angle$$
 when $\lambda \to \infty, \; \mathbf{s} \to 1$ when $\lambda \to 0, \; \mathbf{s} \to 0$

Phase transition

$$s = 1 - e^{-\lambda s}$$

non-zero solution exists when (at s = 0):

$$\lambda e^{-\lambda s} > 1$$

critical value:

$$\lambda_c =$$

$$\lambda_{c}=1$$

$$\lambda_{c}=\langle \mathbf{k}\rangle=p_{c}n=1,\ p_{c}=\frac{1}{n}$$

Numerical simulations

Evolution of random network

from A-L. Barabasi, 2016

Phase transition

Graph G(n, p), for $n \to \infty$, critical value $p_c = 1/n$

- Subcritical regime: $p < p_c$, $\langle k \rangle < 1$ there is no components with more than $O(\ln n)$ nodes, largest component is a tree
- Critical point: $p=p_{cr}\langle k\rangle=1$ the largest component has $O(n^{2/3})$ nodes
- Supercritical regime: $p>p_c$, $\langle k\rangle>1$ gigantic component has all $O((p-p_c)n)$ nodes
- Connected regime: $p >> \ln n/n$, $\langle k \rangle > \ln n$ gigantic component has all O(n) nodes

Critical value: $\langle k \rangle = p_c n = 1$ - on average one neighbor for a node

Numerical simulation

Clauset, 2014

Threshold probabilities

Graph G(n, p)

Threshold probabilities when different subgraphs of k-nodes and l-edges appear in a random graph $p_s \sim n^{-k/l}$

When $p > p_s$:

- $p_s \sim n^{-k/(k-1)}$, having a tree with k nodes
- $p_s \sim n^{-1}$, having a cycle with k nodes
- $p_s \sim n^{-2/(k-1)}$, complete subgraph with k nodes

Barabasi, 2002

Clustering coefficient

 Clustering coefficient (probability that two neighbors link to each other):

$$C_i(k) = \frac{\text{\#of links between NN}}{\text{\#max number of links NN}} = \frac{pk(k-1)/2}{k(k-1)/2} = p$$

$$C = p = \frac{\langle k \rangle}{n}$$

• when $n \to \infty$, $C \to 0$

Graph diameter

 G(n, p) is locally tree-like (GCC) (no loops; low clustering coefficient)

on average, the number of nodes d steps away from a node

$$n = 1 + \langle \mathbf{k} \rangle + \langle \mathbf{k} \rangle^2 + ... \langle \mathbf{k} \rangle^D = \frac{\langle \mathbf{k} \rangle^{D+1} - 1}{\langle \mathbf{k} \rangle - 1} \approx \langle \mathbf{k} \rangle^D$$

• around p_c , $\langle k \rangle^D \sim n$,

$$D \sim rac{\ln n}{\ln \langle k
angle}$$

Graph diameter

Random graph model

Node degree distribution function - Binomial/Poisson:

$$P(k) = \frac{\lambda^k e^{-\lambda}}{k!}, \ \lambda = pn = \langle k \rangle$$

Average path length:

$$\langle L \rangle = \frac{\ln n}{\ln \langle k \rangle}$$

Clustering coefficient:

$$C = \frac{\langle k \rangle}{n}$$

Degree distribution in real networks

Configuration model

- Random network with a predefined degree sequence: $D = \{k_1, k_2, k_3...k_n\}$, n nodes and $m = 1/2 \sum_i k_i$ edges.
- Construct by randomly matching two stubs and connecting them by an edge.

- Can contain self loops and multiple edges
- Probability that two nodes i and j are connected

$$p_{ij} = \frac{k_i k_j}{2m - 1}$$

• Will be a simple graph for special "graphical degree sequence"

Configuration model

Can be used as a "null model" for comparative network analysis

Clauset, 2014

References

- On random graphs I, P. Erdos and A. Renyi, Publicationes Mathematicae 6, 290–297 (1959).
- On the evolution of random graphs, P. Erdos and A. Renyi, Publication of the Mathematical Institute of the Hungarian Academy of Sciences, 17-61 (1960)