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Network models

Empirical network features:
® Power-law (heavy-tailed) degree distribution
® Small average distance (graph diameter)
e Large clustering coefficient (transitivity)

Generative models:
® Random graph model (Erdos & Renyi, 1959)
® "Small world” model (Watts & Strogatz, 1998)
e Preferential attachement model (Barabasi & Albert, 1999)
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Random graph model

Graph G{E, V}, nodes n = |V|, edges m = ||
Erdos and Renyi, 1959.
Random graph models
® G(n,m) arandomly selected graph from the set of C}j graphs,

N = "(” U | with n nodes and m edges
n(n 1)

® G(n,p) each pairout of N = pairs of nodes is connected
with probability p, m - random number

<m>—p—n(n2_ 2
=23k =2" _pn1)~pn

_m
P - P
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Random graph model G(n, p)

n=12,p=1/6 n =100,p = 0.03

Lecture 3 Higher School of Ecol

ry 24,2022 4/24



Random graph model G(n, p)

¢ In G(n, p) model, probability for a network to have m links is
given by binomial distribution:

P(m) = Cip™(1 = p)""

where N = ”(”2_1)

e p™ - probability that m links are present
(1 — p)N=" - probability that other links are not
C{ - number of ways to select m links out of all N,

Cﬁ = m!(l\llvim)!

e expected number of links

B N p N = n(n—1)
(m) = 3 mp(m) = pN = p1=
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Degree distribution

® Probability that i-th node has a degree k; = k is given by
Binomial distribution:

Pl = k) = P(K) = C_1p"(1 —p)

p¥ - probability that connects to k nodes (has k-edges)
(1 — p)"~*=1 - probability that does not connect to any other
node CX_, - number of ways to select k nodes out of all to

n—1)!
connectto, Ck | = m

¢ Binomial distribution, when (k) << Norn — coandp — 0 at
fixed (k), is well approximated by Poisson distribution:

(kyke=th \ke=A

Pl = =4 Kl

, (k) =pn=2A
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Poisson Distribution
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Random graph

Random graph model
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Random graph model

Consider Gy as a function of p
® p =0,empty graph- (k) =0
® p = 1,complete (full) graph- (k) =n —1
® ng -largest connected component, s = ”76
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Phase transition

Let u - fraction of nodes that do not belong to GCC. The probability
that a node does not belong to GCC

n—ng
u= =
n

Pk=0)+Pk=1)-u+Pk=2) -t +Pk=3) .. =

> k=2
_ Zp(k)uk _ Z U= e he _ Al
k=0 k=0

Let s -fraction of nodes belonging to GCC (size of GCC)

U= e)\(u—l)

s=1-u, 1—-s=e ™

A =pn = (k)
when A — 0o, s —> 1

when A — 0, s — 0
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Phase transition
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non-zero solution exists when (ats = 0):
e ™M > 1
critical value:

>\C21
1
Ac = (k) =pcn =1, pc:E
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Numerical simulations

GCC, %
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Evolution of random network

0.8

do>1 (ky» InN

from A-L. Barabasi, 2016
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Phase transition

Graph G(n, p), for n — oo, critical value p. = 1/n

¢ Subcritical regime: p < p, (k) < 1 there is no components
with more than O(In n) nodes, largest component is a tree

e Critical point: p = p, (k) = 1 the largest component has
0(n%*/3) nodes

e Supercritical regime: p > p, (k) > 1 gigantic component has
all O((p — pc)n) nodes

¢ Connected regime: p >> Inn/n, (k) > Inn gigantic
component has all O(n) nodes

Critical value: (k) = p.n = 1- on average one neighbor for a node
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Threshold probabilities

Graph G(n, p)
Threshold probabilities when different subgraphs of k-nodes and
l-edges appear in a random graph ps ~ n//

When p > p;:
e ps ~ nK/=1) having a tree with k nodes
® p; ~ n~!, having a cycle with k nodes
e p; ~ n—2/(k=1) complete subgraph with k nodes

Barabasi, 2002
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Clustering coefficient

¢ Clustering coefficient (probability that two neighbors link to
each other):

(k) = #of links between NN~ pk(k—1)/2
"7 #max number of links NN~ k(k —1)/2

k)
n

C:p:

® whenn — o0, C—0
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Graph diameter

® G(n,p) is locally tree-like (GCC) (no loops; low clustering
coefficient)

® on average, the number of nodes d steps away from a node

D+1 _
n=1+ (k) + (k)* + ..(k) :<k<>k>—_11z(k)D
e around p., (k)° ~ n,
Inn
~ In(k)
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Graph diameter
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Random graph model

® Node degree distribution function - Binomial/Poisson:

Kp—A
P(k) = % A=pn=(K
® Average path length:
Inn
=
e Clustering coefficient:
n
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Real networks

Degree distribution in real networks

INTERNET r SCIENCE I . PROTEIN
1 COLLABORATION INTERACTIONS
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Configuration model

e Random network with a predefined degree sequence:
D = {ki,ko,ks..kn}, n-nodesand m = 1/2 . k; edges.

Construct by randomly matching two stubs and connecting

RHAKF S

Can contain self loops and multiple edges

Probability that two nodes i and j are connected

_ kik;
Co2m—1

Pij
* Will be a simple graph for special “graphical degree sequence”
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Configuration model

Can be used as a "null model” for comparative network analysis
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Clauset, 2014
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