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Class details

® Instructors: Leonid Zhukov, llya Makarov, Dmitrii Kiselev

Course duration: Modules 3-4

Module 3: 10 lectures, 10 online labs

Schedule:
Lectures - Monday 18.10-19.30, ZOOM
Labs - Monday, 19.40-21.00, ZOOM

Website: www.leonidzhukov.net/hse/2022/networkscience

Emails: Izhukov@hse.ru, iamakarov@hse.ru, dkiseljov@hse.ru

Programming: Python, iPython notebooks (Anaconda)

Python libraries: NetworkX

Visualization: yEd, Gephi
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Prerequisites

Discrete Mathematics

Linear Algebra

Algorithms and Data Structures
Probability Theory
Differential Equations

Programming in Python
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Network science

Sociology (SNA)
Mathematics (Graphs)

e Computer Science (Graphs)

Statistical Physics (Complex networks)

Economics (Networks)

Bioinformatics (Networks)
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Conferences

The Web conference (former WWW)
WSDM, ICDM, KDD, ECML-PKDD

¢ International Conference on Social Network Analysis, INSNA

Complex Networks

ACM Conference on Online Social Networks

® Conference on Complex Systems
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Course topics

Statistical properties and modelling of the network

Network structure and dynamics

Processes on networks

Predictions on networks (ML)
Network embeddings (DL)
Graph neural networks (DL)
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Module 3 lectures

. Introduction to network science

. Power law and scale-free networks

. Random graphs

. Generative network models

. Node centrality and ranking on networks

. Graph partitioning

. Network communities

1
2
3
4
5
6. Network structure
7
8
9. Mathematical models of epidemics
0

. Epidemics on networks
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Textbooks

"Network Science’, Albert-Laszlo Barabasi, Cambridge
University Press, 2016: networksciencebook.com

"Networks: An Introduction”. Mark Newman. Oxford University
Press, 2010.

"Social Network Analysis. Methods and Applications”. Stanley
Wasserman and Katherine Faust, Cambridge University Press,
1994

"Networks, Crowds, and Markets: Reasoning About a Highly
Connected World". David Easley and John Kleinberg,
Cambridge University Press 2010.
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Terminology

network = graph
® nodes = vertices, actors

links = edges, relations

clusters = communities
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Networks

® they are everywhere

® universal abstract
representation

® not regular, but not random
® non-trivial topology

® many universal properties
® complex systems
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Internet

Internet traffic routing (BGP)

Barret Lyon, 2003
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Facebook friendship

Electronic literature
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Political blogs

red-conservative blogs, blue -liberal, orange links from liberal to
conservative, purple from conservative to liberal

image from L. Adamic, N. Glance, 2005
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Examples: Twitter

"#usa” hashtag diffusion, retweets - blue, mentions - orange

image from K. McKelvey et.al., 2012
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Communications

Enron emails

Lecture 1



Finance

existing relations between financial institutions
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Examples: Transportation

Zurich public transportation map

SERAT
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ion network

Yeast protein interact
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Human Connectome

DT-MRI white matter fiber tractography

Human Connectome Project
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Facebook

Friendship graph 500 min people

image by Paul Butler, 2010
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Visual complexity
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A network is represented by a graph G(V, E),

A graph G = (V,E) is an ordered pair of sets: a set of vertices V
and a set edges E, where n = |V|, m = |E]

An edge ejj = (vj, ;) is pair of vertices (ordered pair for directed
graph)

Adjacency matrix A"*" is a matrix with nonzero element aj;
when there is an edge ¢;;
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Undirected Graph Adjacency Matrix
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Directed Graph
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Nodes degree

Two nodes/vertices are adjacent if they share a common edge
® Anedge and a node on that edge are called incident.

The degree k; of a node v; is the total number of nodes adjacent
to it (number of incident edges) , ki = | N (v;)|

Average node degree in the graph:

1 om  2|F|
K==S k= 2E
(k) nz’_:' n V|

In directed graphs total node degree k; = kI + koUt

k" - incoming degree, number of edges pointing to node i

kout - outgoing degree, number of edges/ pointing from node i
In directed graphs average in and out degrees are equal:

1 m  |E|
in\ __ n __ out _ = out _ —
(K™ E:/a (K _n§i:k, P
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Degree distribution

® ki-node degree, ki = 1,2, ...kmax

® ny - number of nodes with degree k, total nodes n = ), ny
® Degree distribution is a fraction of the nodes with degree k
Nk . Nk

S kmk 0

(@ () 075
P
05
- I
. HEN
0 1 2 K 3 b

© (@ ,

P(ki = k) = P(k) = Py

Lecture 1 Higher School of Economics January 10, 2022 25/49



Graph connectivity

® A path from v; to v; is a sequence of edges that joins two
vertices. (It also ordered list of vertices such that that there is
an edge to the next vertex on the list)

e A graph is connected if there a paths between any two vertices.
® Connected component is a maximal connected subgraph of G

90 @
2
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Paths and distances

® The distance dg(vj, vj) between two vertices is the number of
edges in the shortest path from v; to v;

® Graph diameter is the largest shortest path:
D= max; ; dg(V,', VJ)

® Average path length (bounded from above by the diameter):

0= > dolv)
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Paths and distances

"Yeast” graph, n = 2617, m = 11855
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Diameter D = 15, average path length (L) = 5.1
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Graph transititvity

e Transitivity of a graph (global clustering coefficient):

3 x number of triangles (triads)
number of connected triplets of vertices

Intransitive Transitive
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Clustering coefficient

How neighbours of a given node connected to each other
® |ocal clustering coefficient (per vertex):

number of links in V;

T k= 1))2

(a) — —
2 T
C=1 C=12 C=0

® Average clustering coefficient:
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Complex networks

Networks:
1. Scale-free - power law node degree distribution
2. Small-world - small diameter and average path length
3. Transitive - high clustering coefficient
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Scale-free networks
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Node degree distributions

(© o, ° » @
e 7l .
> ° 3 ° 3
hay W ¥ o —* Pe ¢

o ™ ° ' X

o\ g » ° .
" » o LA
‘ Y A . 4 oo
s . 4 . : Z 5] e
< 9 e8-2, | | LA
d .
e ) =Y . @ o9 L
L ) 4 'S . o [ . °
4
& ' L] L]
L]
(a) (b)

015 r 1 ! ' R e —
k2 ~ k2t 1
Pk 107 % i
01 - TS 1
Py 1
P POISSON 10° 1
0.05 - 4 04k i
[ PoIssoN ]
105 L 1
100 L i i
0 10 20 30 40 50 100 0 100

Lecture 1 Higher School of Ec January 10, 2022 33/49




Scale-free networks
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Power law network

Graphing The History Of Philosophy

Lecture 1 January 10, 2022 35/49



Power law network
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Triads

The Strength of Weak Ties'

Mark S. Granovetter
Johns Hopkins University

Analysis of social networks is suggested as a tool for linking micro
and macro levels of sociological theory. The procedure is illustrated
by elaboration of the macro implications of one aspect of small-scale
interaction: the strength of dyadic ties. It is argued that the degree
of overlap of two individuals’ friendship networks varies directly
with the strength of their tic to one another. The impact of this
principle on diffusion of influence and information, mobility oppor-
tunity, and community organization is explored. Stress is laid on the
cohesive power of weak ties. Most network models deal, implicitly,
with strong ties, thus confining their applicability to small, well-
defined groups. Emphasis on weak ties lends itself to discussion of
relations between groups and to analysis of segments of social struc-
ture not easily defined in terms of primary groups.

® "The Strength of Weak Ties’, Mark Grannoveter, 1973

® "Spread of Information through a Population with
Socio-Structural Bias. Assumption of Transitivity’, Anatol
Rapoport, 1953
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Triadic closure

e strength of a tie
® high transitivity
® high clustering coefficient

A B

F1c. 1.—Forbidden triad

If A and B and B and C are strongly linked, the the tie between B and
Cis always present

Grannoveter, 1973
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High clustering

Facebook friendship

All Friends Maintained Relationships

image from Cameron Marlow, Facebook
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High clustering

Co-author network
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Small world: six degrees of

An Experimental Study of the
Small World Problem*
JEFFREY TRAVERS
Harvard University
AND
STANLEY MILGRAM
The City University of New York

Arbitrarily selected individuals (N=296) in Nebraska and Boston are asked
to generate acquaintance chains to a target person in Massachusetts, employ-
ing “the small world method” (Milgram, 1967). Sixty-four chains reach
the target persown. Within this group the mean number of intermediaries be-
i tween staviers and torgets is 5.2. Boston starting chains reach the target

I person with fewer intermediaries than those starting in Nebraska; subpopula-
© Al Satterwhite tions in the Nebraska group do not differ among themselves. The funneling
of chains through sociometric “stars” is noted, with 48 per cent of the chains
passing through three persons before reaching the target. Applications of the
method to studies of large scale social structure ave discussed.

® "The small-world problem”. Stanley Milgram, 1967

e "An experimental study of the small world problem’, Jeffrey
Travers, Stanley Milgram, 1969
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Stanley Milgram’s 1967 experiment

Lecture 1

HOW TO TAKE PART IN THIS STUDY

ADD YOUR NAME TO THE ROSTER AT THE BOT-
TOM OF THIS SHEET, so that the next person who re-

ceives this letter will know who it came from.

DETACH ONE POSTCARD. FILL IT OUT AND RE-

TURN IT TO HARVARD UNIVERSITY. No stamp is

needed. The postcard is very important. It allows us to keep
track of the progress of the folder as it moves toward the tar-

get person.

IF YOU KNOW THE TARGET PERSON ON A PER-
SONAL BASIS, MAIL THIS FOLDER DIRECTLY TO
HIM (HER). Do this only if you have previously met the

target person and know each other on a first name basis.

IF YOU DO NOT KNOW THE TARGET PERSON ON A
PERSONAL BASIS, DO NOT TRY TO CONTACT HIM
DIRECTLY. INSTEAD, MAIL THIS FOLDER (POST-
CARDS AND ALL) TO A PERSONAL ACQUAIN-
TANCE WHO IS MORE LIKELY THAN YOU TO
KNOW THE TARGET PERSON. You may send the folder

Higher School of Economics

January 10, 2022

42/49



Stanley Milgram’s 1967 experiment

e Starting persons:
® 206 volunteers, 217 sent
® 196 in Nebraska
® 100 in Boston
® Target person - Boston
stockbroker

¢ |nformation given: target
name, address, occupation,
place of employment, college,
hometown

J. Travers, S. Milgram, 1969
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Stanley Milgram’s 1967 experiment

20

¢ Reached the target N = 64(29%)

¢ Average chain length (L) = 5.2
® Channels:

® hometown (L) = 6.1

® business contacts (L) = 4.6
e from Boston (L) = 4.4

® from Nebraska (L) = 5.7

5

o

NUMBER OF CHAINS

J. Travers, S. Milgram, 1969
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Small world

® Email graph:
D. Watts (2001), 48,000 senders, (L) ~ 6
® MSN Messenger graph:
J. Lescovec et al (2007), 240mln users, (L) ~ 6.6
® Facebook graph:
L. Backstrom et al (2012), 721 min users, (L) ~ 4.74
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figures from L.Backstrom, 2012
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Simple model

An estimate: 2 = N,d = logN/ log z
N = 6.7 bln, z = 50 friends, d = 5.8.
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Network Data

® The Colorado Index of Complex Networks (ICON)
http://icon.colorado.edu

e Stanford Large Network Dataset Collection
http://snap.stanford.edu/data/index.html

® UCI Network Data Repository
http://networkdata.ics.uci.edu
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