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through a distribution channel (store, catalogue,
online) directly to the consumer

Some retail segments
» (Grocery/food retailor & mass merchants
» Fashion/apparel and department stores
» Specialty retalil
» Restaurants, cafes, and fast food
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RETAIL SUPPLY CHAIN

Presentation subtitle Supply == = Demand
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Supplier Distributor / Customer
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DATA DRIVEN DECISION MAKING

Examples of DS topics

Operations (supply side) Customer (demand side)

[buying, logistics, sales] [marketing]

e Demand forecast * Personalized marketing

« Sales forecast » Recommendation engines, next best offer
»  Buying volumes / inventory management * Market basket analysis

»  Store allocation optimization * Cross-selling and up-selling

»  Price optimization / price elasticity * Propensity tobuy

» Mark down / promotion effectivness * Loyalty program optimization

» (Customer sentiment analysis

prediction ) optimization ~ WEEEE) cost/revenue
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DATA DRIVEN DECISION MAKING

Customer and SKU level data analysis

Sales data Customer data (CRM)
Time ___iStore ____ISKU_____units____Dollars R C  iomeriD |Date  |SKU  |Store |Units |Dollars
Week Region Category Demos
Month Age Model
Quarter Size Color
Year “Same” status Size

Promo data, marketing data, external data (economics, geographical, population, brands)
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PROMO EFFECTIVENESS

llustrative
Discount investment Usually Cannibalization: Cannibalization of sales
that we gave away lusic decrease in regular sales of other promos running
on each item sold anatygsis § of other SKUs due at the same time due to
stops here consumers switching a better offer
: to our promotion
Gross sales
uplift after
discount
Additional

sales thanks to
the promotion

o Starting point:
baseline that
we would have |——e

sold if there
Was no promo

Base + Discount Promo Sales | Cannibalization Cross-promo Net promo
Uplift Sales of reqular sales cannibalization effect



School of Data Analysis and Atrtificial Intelligence
Department of Computer Science

SALES FORECASTING

Estimating the future sales

Revenue
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FORECASTING METHODS

Time series forecasting / signal extrapolation Point matching / regression
* Signal history  History of comparable signals
* Few external factors » Many explanatory factors
 Structured (trend, cyclicality) signal » Large datasets

y(t+1) =1 (y(0), y(t-1), y(t-2), ...)

y(t) = T (x1(t), x2(1), ...))
y(t+h) = f(x1(t), x2(t),...)
* Moving average
* Exponential smoothing
* ARIMA ML algorithms
« GLM
» Random forest
 Gradient boosting
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TIME SERIES FORECASTING

Total International visitors to Australla
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FORECASTING WITH REGRESSION

Forecasts of beer production using regression
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FORECASTING WITH REGRESSION

Direct modeling

\Y/ 0000000000000 0 0 0 0 0099009 {me

:><: — 0000000000000 000 0090009 {me

today
Regression: Y(t) = f(x1(t), x2(t), x3(t), x4, x5, x6)
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FORECASTING WITH REGRESSION

Modeling with time lag

h
Y ....’.’...‘......’.’...\..)tlme
///// //t+h
X / time
t

Regression: Y(t+h) = f(x1(t), x2(t), x3(t), x4, x5, x6)
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REGRESSION EVALUATION

Quality metrics Standard quality metrics

N
i A
Mean absolute error: ~ MAE = ﬁz y: =¥
=1

" o
N
1 ey 2
" Mean squared error.  MSE = EZO’" =
=1
@ , 1 N
E & | Root mean squared error:  RMSE = VMSE = WZ(y,- - ¥)?
S NI
Xy —¥)?
_ . RZ =1 — —
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Where,

y — predicted value of y

Inputs =
vy — mean value of y
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TRAINING AND TESTING

Learning on data

Sample

Predict / generalize

—

Model

Train & Test split

Data

v

Training Test
* Build the model e Test the model
« TRAINING ERROR e TESTING ERROR
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REGRESSION

Modeling
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LINEAR REGRESSION

Modeling
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POLYNOMIAL REGRESSION

Modeling

p=2

Train error: 0.8792 Train error: 0.5989 Train error: 0.7399
Test error; 0.8319 Test error; 0.6242 Test error: 0.8418
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KNN REGRESSION

Modeling

K=1

20

Train error: 0.0
Test error: 0.7574
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k=5

Train error: 0.5468
Test error; 0.6248

Train error: 0.7399
Test error; 0.8241
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REGRESSION TREES

Modeling
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X[0] <= 42.5 |
mse = 3.107
samples = 63
Lvalue = 18.3281
mse = 1.433 | " mse = 0.519
samples = 28 samples = 35
value = 19.981 value = 17.0071
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Train error: 0.9617
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REGRESSION TREES

Modeling
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value = 18.328
X[0]<=175 X[0] «<=51.0
mse = 1.433 mse = 0.519
samples = 28 samples = 35
value = 19.98 value = 17.007
mse = 0.299 mse = 0.339 mse = 0.253 mse = 0.308
samples =5 || samples = 23 | samples =7 | samples = 28
value = 22.23||value = 19.491 |value = 17.949 ]| value = 16.771

16 A o oo

Train error: 0.5589
Test error: 0.6371
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REGRESSION TREES

Modeling
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Train error; 0.3586
Test error; 0.6142
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ENSEMBLE METHOD: RANDOM FOREST REGRESSION

Modeling

: Test Sample Input

23

22

Tree 1 Tree 2 Tree 600
21 - () (2 L) Q
20 - @ O ¢ @ © O @ O @
19 - '
Prediction 1 Prediction 2 (...) Prediction 600

mi Eemm L) =

Average All Predictions

v

Random Forest
Prediction

18 -

17 A

16 -

Train error: 0.4538
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MODEL TRAINING AND TESTING

Presentation subtitle

Thematic title of the main text

S
4

High Bias Low Bias
Low Variance High Variance
-y —————— D e e eeame. pr—

Test Sample

Prediction Error

/

Training Testing

/

Traming Sample

Low High
Model Complexity
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ONE MORE BOOK

Rob J Hyndman

George Athanasopoulos

FORECASTING

PRINCIPLES AND PRACTICE
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