

NATIONAL RESEARCH UNIVERSITY School of Data Analysis and Artificial Intelligence Department of Computer Science

DATA SCIENCE FOR BUSINESS

Lecture 4. Data Science in Retail. Forecasting with regression.

Moscow, May 15th, 2020.

lzhukov@hse.ru

WHAT IS RETAIL?

Retail is the sale of consumer goods (or services) through a distribution channel (store, catalogue, online) directly to the consumer

Some retail segments

- Grocery/food retailor & mass merchants
- Fashion/apparel and department stores
- Specialty retail
- Restaurants, cafes, and fast food

RETAIL SUPPLY CHAIN

Presentation subtitle

School of Data Analysis and Artificial Intelligence Department of Computer Science

DATA DRIVEN DECISION MAKING Examples of DS topics

Operations (supply side) [buying, logistics, sales]

- Demand forecast
- Sales forecast
- Buying volumes / inventory management
- Store allocation optimization
- Price optimization / price elasticity
- Mark down / promotion effectivness

Customer (demand side) [marketing]

- Personalized marketing
- Recommendation engines, next best offer
- Market basket analysis
- Cross-selling and up-selling
- Propensity to buy
- Loyalty program optimization
- Customer sentiment analysis

DATA DRIVEN DECISION MAKING

Customer and SKU level data analysis

Sales data

Time	Store	SKU	Units	Dollars
Week	Region	Category		
Month	Age	Model		
Quarter	Size	Color		
Year	"Same" status	Size		

School of Data Analysis and Artificial Intelligence Department of Computer Science

Promo data, marketing data, external data (economics, geographical, population, brands)

SALES FORECASTING

Estimating the future sales

FORECASTING METHODS

Time series forecasting / signal extrapolation

- Signal history
- Few external factors
- Structured (trend, cyclicality) signal

y(t+1) = f(y(t), y(t-1), y(t-2), ...)

- Moving average
- Exponential smoothing
- ARIMA

Point matching / regression

- History of comparable signals
- Many explanatory factors
- Large datasets

y(t) = f(x1(t), x2(t), ...))y(t+h) = f(x1(t), x2(t),...)

ML algorithms

- GLM
- Random forest
- Gradient boosting

TIME SERIES FORECASTING

FORECASTING WITH REGRESSION

School of Data Analysis and Artificial Intelligence Department of Computer Science

Regression: Y(t) = f(x1(t), x2(t), x3(t), x4, x5, x6)

School of Data Analysis and Artificial Intelligence Department of Computer Science

Modeling with time lag

Regression: Y(t+h) = f(x1(t), x2(t), x3(t), x4, x5, x6)

School of Data Analysis and Artificial Intelligence Department of Computer Science

REGRESSION EVALUATION Quality metrics

Standard quality metrics

Mean absolute error:

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}|$$

Mean squared error:

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

Root mean squared error:

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2}$$

R-squared:

$$R^{2} = 1 - \frac{\sum(y_{i} - \hat{y})^{2}}{\sum(y_{i} - \bar{y})^{2}}$$

Where,

$$\hat{y} - predicted value of y$$

 $\overline{y} - mean value of y$

REGRESSION Modeling

LINEAR REGRESSION Modeling

Train error: 0.9733

School of Data Analysis and Artificial Intelligence Department of Computer Science

Test error: 1.0222

KNN REGRESSION Modeling

Train error: 0.0 Test error: 0.7574

Train error: 0.5468 Test error: 0.6248

Train error: 0.7399 Test error: 0.8241

REGRESSION TREESModeling

Train error: 0.9617 Test error: 1.1243

REGRESSION TREESModeling

Train error: 0.5589 Test error: 0.6371

REGRESSION TREES Modeling

Train error: 0.3586 Test error: 0.6142

ENSEMBLE METHOD: RANDOM FOREST REGRESSION Modeling

Train error: 0.4538 Test error: 0.5178

MODEL TRAINING AND TESTING

Presentation subtitle

Thematic title of the main text

Model Complexity

ONE MORE BOOK

School of Data Analysis and Artificial Intelligence Department of Computer Science

George Athanasopoulos

FORECASTING PRINCIPLES AND PRACTICE

A comprehensive introduction to the latest forecasting methods using R. Learn to improve your forecast accuracy using dozens

NATIONAL RESEARCH UNIVERSITY