

School of Data Analysis and Artificial Intelligence Department of Computer Science

DATA SCIENCE FOR BUSINESS

Lecture 2. Exploratory Data Analysis

Moscow, April 17th, 2020.

EXPLORATORY DATA ANALYSIS (EDA)

Exploratory Data Analysis (EDA) is an approach for data analysis without statistical model or formulated prior hypothesis

EDA goals

- Maximize insight into a data set
- Uncover underlying structure
- Detect missing data
- Detect outliers and anomalies
- Rank important factors
- Perform sanity check

Approaches

- 1. Descriptive statistics: computing simple summary statistics such as mean, median, standard deviation, plotting box plots, histograms
- 2. Visualization: plotting the raw data data traces, scatter plots, frequency plots, probability plots, multivariate plots

DATA TYPES

- Categorical data (= labels, nominal, ordinal [ordered], binary)
- Quantitative data (= numbers, discrete [integer], continues [real])

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town	alive	alone
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	NaN	Southampton	no	False
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	С	Cherbourg	yes	False
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	NaN	Southampton	yes	True
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	С	Southampton	yes	False
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	NaN	Southampton	no	True
5	0	3	male	NaN	0	0	8.4583	Q	Third	man	True	NaN	Queenstown	no	True
6	0	1	male	54.0	0	0	51.8625	S	First	man	True	Е	Southampton	no	True
7	0	3	male	2.0	3	1	21.0750	S	Third	child	False	NaN	Southampton	no	False
8	1	3	female	27.0	0	2	11.1333	S	Third	woman	False	NaN	Southampton	yes	False

TABLE ROWS = instances, examples, data points, observations, samples TABLE COLUMNS = attributes, features, variables

EDA TOOLS

Methods and approaches

Summary statistics

- min, max (range)
- mean, median (location)
- variance, standard deviation (dispersion)
- skewness (asymmetry)
- kurtosis (peakedness)

Visualization

- Bar plots
- Scatter plots
- Histograms
- Box plots
- Pairwise correlation matrix

CENTRALITY: MEAN AND MEDIAN

mean (average):

$$\overline{X} = \frac{X_1 + X_2 + \ldots + X_n}{n} = \frac{1}{n} \sum_{i=1}^n X_i$$

The "average" number

median:

$$Median = \begin{cases} x_{\lfloor n/2 \rfloor + 1}, & \text{if } n \text{ is odd} \\ \frac{x_{n/2} + x_{n/2 + 1}}{2}, & \text{if } n \text{ is even} \end{cases}$$

The middle number

MEAN VS MEDIAN

The mean is sensitive to outliers

MEAN VS MEDIAN

The mean is sensitive to asymmetry (skewiness) in distribution!

HISTOGRAM

Visualizing how 1-dimensional data is distributed

Trends in histograms are sensitive to number of bins

VARIANCE AND STANDARD DEVIATION

Variance

$$s_N^2 = \frac{1}{N} \sum_{i=1}^N (x_i - \overline{x})^2,$$

Standard deviation

$$s_N = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})^2}.$$

Iris Versicolor

Iris VIrginica

Iris Setosa

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	2.5	3.0	1.1	versicolor
1	5.7	3.0	4.2	1.2	versicolor
2	6.1	2.9	4.7	1.4	versicolor
3	5.4	3.0	4.5	1.5	versicolor
4	7.7	3.8	6.7	2.2	virginica
5	5.5	3.5	1.3	0.2	setosa
6	5.1	3.8	1.6	0.2	setosa
7	6.5	3.0	5.8	2.2	virginica
8	5.4	3.9	1.3	0.4	setosa
9	5.4	3.4	1.5	0.4	setosa

Histogram – each bin shows counts of samples within the bin range

Scatterplot – location of the points represents relationships between variables, colors - classes

Pair plot scatterplot matrix

Boxplot – location of the points represents relationships between variables, colors - classes

BOXPLOTS

DATA DEPENDENCE - CORRELATIONS

Correlation coefficient – measure of dependency between two variables (how much they change together)

Person correlation coefficient $r_{XY} = -$

$$r_{XY} = rac{\sum_{i=1}^{n}(X_{i}-\overline{X})(Y_{i}-\overline{Y})}{\sqrt{\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}}\sqrt{\sum_{i=1}^{n}(Y_{i}-\overline{Y})^{2}}}$$

Correlation matrix

	sepal_length	sepal_width	petal_length	petal_width
sepal_length	1.000000	-0.117570	0.871754	0.817941
sepal_width	-0.117570	1.000000	-0.428440	-0.366126
petal_length	0.871754	-0.428440	1.000000	0.962865
petal_width	0.817941	-0.366126	0.962865	1.000000

SIMPLE LINEAR REGRESSION

Linear trend in the data

SIMPLE LINEAR REGRESSION

Linear trend in the data

Sales =
$$a * TV + b$$

y = $a * x + b$

Scatterplot + trend lines (linear regression)

TIME DEPENDENT DATA

window

TIME DEPENDENT DATA

Filtering data: smoothing

COVID-19 DATA

Russia

Russia

Daily confirmed cases

Russia

COVID-19 DATA

Russia

Cumulative confirmed cases

Outfluidity Committed Cast

Cumulative confirmed cases, log scale

Russia

COVID-19 DATA

Russia

Naive growth model:

$$N(t+1) = R*N(t)$$

$$N(1) = R*N(0)$$

 $N(2) = R*N(1) = R^2*N(0)$

daily_N(t) = N(t+1) - N (t)
daily_N(t) =
$$(R-1)*N(t)$$

daily_N(t+1) = $R*daily_N(t)$

How to find R?

$$\log N(t) = \log(R^t * N(0))$$

$$\log N(t) = t*\log R + \log N(0)$$

$$y = a^*t + b$$

$$a = log R$$

$$R = \exp(a)$$

COVID-19 DATA

Russia

$$y = 0.18*t + 4.34$$

R = 1.20

Average 20% daily growth since March 17th

WHY PLOTTING YOUR DATA?

Anscombe's quartet

	Data	set I	Dataset II		Dataset III		Dataset IV	
	X	У	Х	У	Χ	У	X	У
	10	8.04	10	9.14	10	7.46	8	6.58
	8	6.95	8	8.14	8	6.77	8	5.76
	13	7.58	13	8.74	13	12.74	8	7.71
	9	8.81	9	8.77	9	7.11	8	8.84
	11	8.33	11	9.26	11	7.81	8	8.47
	14	9.96	14	8.1	14	8.84	8	7.04
	6	7.24	6	6.13	6	6.08	8	5.25
	4	4.26	4	3.1	4	5.39	19	12.5
	12	10.84	12	9.13	12	8.15	8	5.56
	7	4.82	7	7.26	7	6.42	8	7.91
	5	5.68	5	4.74	5	5.73	8	6.89
Sum:	99.00	82.51	99.00	82.51	99.00	82.51	99.00	82.51
Avg:	9.00	7.50	9.00	7.50	9.00	7.50	9.00	7.50
Std:	3.32	2.03	3.32	2.03	3.32	2.03	3.32	2.03

WHY PLOTTING YOUR DATA?

Anscombe's quartet

UNIVERSITY