
Global Min�cuts in RNC� and Other Rami�cations of a Simple

Min�Cut Algorithm

David R� Karger�

Department of Computer Science

Stanford University

karger�cs�stanford�edu

October ��� ����

Abstract This paper presents a new algorithm for
�nding global min�cuts in weighted� undirected graphs�
One of the strengths of the algorithm is its extreme
simplicity� This randomized algorithm can be imple�
mented as a strongly polynomial sequential algorithm
with running time �O�mn��� even if space is restricted
to O�n�� or can be parallelized as an RNC algorithm
which runs in time O�log� n� on a CRCW PRAM with
mn� logn processors� In addition to yielding the best
known processor bounds on unweighted graphs� this al�
gorithm provides the �rst proof that the min�cut prob�
lem for weighted undirected graphs is in RNC� The
algorithm does more than �nd a single min�cut� it �nds
all of them� The algorithm also yields numerous results
on network reliability� enumeration of cuts� multi�way
cuts� and approximate min�cuts�

� Introduction

This paper studies the min�cut problem� Given a
graph with n vertices and m �possibly weighted� edges�
we wish to partition the vertices into two non�empty
sets S and T so as to minimize the number of edges
crossing from S to T �if the graph is weighted� we
wish to minimize the total weight of crossing edges��
Throughout this paper� the graph is assumed to be
connected� since otherwise the problem is trivial� The
problem actually comes in two �avors	 in the s�t min�
cut problem� we require that the two speci�c vertices s
and t be on opposite sides of the cut� in what will be
called the min�cut problem� or for emphasis the global
min�cut problem� there is no such restriction�

��� Previous Work� The oldest known way to
compute min�cuts is to use their well known duality with
max��ows 
FF��� FF�
�� Computation of an s�t max�
�ow allows the immediate determination of an s�t min�

�Supported by a National Science Foundation Graduate
Fellowship�

cut� The best presently known sequential time bound
for max��ow is O�mn log�n��m��� found by Goldberg
and Tarjan 
GT���� Global min�cuts can be computed
by minimizingover s�tmax��ows� Hao and Orlin 
HO�
�
show how the max��ow computations can be pipelined
so that together they take no more time than a single
max��ow computation� thus the global min�cut problem
can be solved in the same �O�mn� running time��

Recently� progress has been made in special cases
of the min�cut problem� On unweighted graphs� the
min�cut problem is often known as the edge�connectivity
problem� Gabow 
Gab��� shows how to �nd the edge�
connectivity c of a graph in time O�cn log�n��m��� On
weighted� undirected graphs� the algorithm of Nag�
amochi and Ibaraki 
NI�
� computes the min�cut in time
O�mn�n� logn�� These algorithmsmake no use of max�
�ow computations�

Work has also been done on parallel solutions to
the min�cut problem� Goldschlager� Shaw� and Sta�
ples 
GSS�
� showed that the s�t min�cut problem on
weighted directed graphs is P �complete� This is also
true for the global min�cut problem �see section ��
��
In the special case of unweighted directed or undi�
rected graphs� the matching algorithm of Karp� Upfal
and Wigderson 
KUW���� together with a reduction de�
scribed by Mulmeley� Vazirani and Vazirani 
MVV����
can be used to �nd s�t max��ows and min�cuts in
O�log� n� time using mn��� processors� An alternative
approach of Galil and Pan 
GP��� uses n�M �n� pro�
cessors� where M �n� is the processor cost for multiply�
ing two matrices �presently about n������ In undirected
graphs� �xing a vertex s and �nding s�t min�cuts for
all vertices t identi�es a min�cut� this requires perform�
ing n min�cut computations in parallel at a total cost
of mn��� or n�M �n� processors� Either algorithm can
be extended to weighted graphs by treating an edge of
weight w as a collection of w unweighted edges� How�

�The notation �O�f� denotes O�f polylogf�



min�cut bounds unweighted weighted
undirected directed undirected directed

sequential time cn log n�

m mn � n� logn mn log n�

m

Gab��� 
NI�
� 
GT��� HO�
�

processors previous mn��� or n�M �n� � P�complete
used in work 
KUW��� MVV��� GP��� 
GSS�
�

RNC new cn� mn�

Figure �	 Bounds For the Min�Cut Problem

ever� this makes the processor cost polynomial in the
total weight of the edges� and therefore the algorithm
is only in RNC when edge weights are represented in
unary� Until now there has been no known RNC algo�
rithm for the general weighted case� These results are
summarized in the Figure � �c denotes the value of the
min�cut��

��� New Results� This paper presents a new frame�
work for the computation of global min�cuts� The
surprisingly simple Contraction Algorithm described in
Section 
 �nds global min�cuts in weighted undirected
graphs without any use of max��ow or s�t min�cut com�
putations� In Section � we describe how to implement
the algorithm with a sequential running time �O�mn���
No complex data structures are used� The algorithm
is parallelized in section � to yield the �rst RNC al�
gorithm for global min�cuts of weighted graphs� Ex�
tensions to the algorithm� including a practical time�
processor tradeo�� an approximation algorithm� and an
improved construction of the cactus representation of
min�cuts described by Naor and Vazirani in 
NV���� are
described in Section �

Section � describes combinatorial rami�cations of
the Contraction Algorithm� The algorithm yields the�
orems which bound the number of distinct minimal or
small cuts which a graph may have� These results are in
interesting counterpoint to work of Vazirani and Yan�
nakakis 
VY�
� on enumeration of small cuts� In sec�
tion �� we show how this counting allows an accurate
estimation of how likely a graph is to become discon�
nected if its edges fail with certain probabilities� This
is relevant to the practical problem of network reli�
ability� which is studied in� for example� Colbourn�s
book 
Col���� It is also closely related to a result of
Margulis 
Mar���� discussed in 
Bol���� which proves the
existence of a threshold function for connectedness in
graphs�

With slight modi�cations described in Section �� the
Contraction Algorithm can be used to compute minimal
multi�way cuts� The sequential time bound improves on
the multi�way cut algorithm of 
GH���� and the parallel

version shows that the minimal r�way cut problem is
in RNC for any constant r� In contrast� it is shown
in 
DJP��
� that the multiway cut problem in which
k speci�ed vertices are required to be separated �i�e��
a generalization of the s�t min�cut problem� is NP�
complete for any k � 
�

� The Contraction Algorithm

We now present an abstract version of the Contraction
Algorithm� Although certain changes must be made for
e�cient implementation� this version of the algorithm
is particularly intuitive and easy to analyze�

Assume initially that we are given a multigraph
G�V�E� with n vertices and m edges� The Contraction
Algorithm uses one fundamental operation� contraction
of graph vertices� To contract two vertices v� and v��
replace them by a new vertex v� and let the set of edges
incident on v be the union of the sets of edges incident
on v� and v�� We do not merge edges from v� and v�
which have the same other endpoint� instead� we give v
multiple instances of those edges� However� we remove
edges which connect v� and v� to eliminate self loops�
The Contraction Algorithm is described in Figure 
�

repeat until two vertices remain

choose an edge at random

contract its endpoints

Figure 
	 The Contraction Algorithm

When the Contraction Algorithm terminates� each
original vertex has been contracted into one of the two
remaining �metavertices�� This de�nes a cut of the
original graph in an obvious way�

Theorem ���� A particular min�cut in G is pro�
duced by the Contraction Algorithm with probability
��n����

Proof� Fix attention on some speci�c min�cut of c
edges �from now on� the term �min�cut edge� refers only
to edges in this particular min�cut�� First� observe that
if we never select a min�cut edge during the Contraction






Algorithm� then the two metavertices we end up with
must de�ne the min�cut� To see this� consider two
vertices on opposite sides of the min�cut� If they
end up in the same metavertex� then there must be
a path between them consisting of edges which were
contracted� However� any path between them crosses
the min�cut� so a min�cut edge would have had to be
contracted� This contradicts our assumption�

Next observe that after each contraction� the min�
cut of the new graph must still be at least c� This is
because contracting vertices u and v simply restricts
attention to cuts of the original graph in which u and v
are on the same side�

Each contraction in the above loop reduces the
number of vertices in the graph by one� Consider the
contraction during which the graph has r vertices� Since
the contracted graph has a min�cut of at least c� it
must have minimum degree c� and thus at least rc�

edges� However� only c of these edges are in the min�cut�
Thus� a randomly chosen edge is in the min�cut with
probability at most 
�r� The probability that we never
contract a min�cut edge through all n � 
 contractions
is thus at least

��� 


n
���� 


n� �
� � � � ��� 


�
� �

�
n




���
� ��n����

This bound is tight� In the graph consisting of
a cycle on n vertices� there are

�
n
�

�
min�cuts� one for

each pair of edges in the graph� Each of the min�cuts
is produced by the Contraction Algorithm with equal

probability� namely
�
n
�

���
�

Corollary ���� If we perform O�n� logn� inde�
pendent contractions to two vertices� we �nd a min�cut
with high probability� In fact� with high probability we
�nd every min�cut�

An alternative interpretation of the Contraction
Algorithm is that we are randomly ranking the edges
and then constructing a minimum spanning tree of the
graph based on these ranks �we are in fact emulating
Kruskal�s minimum spanning tree algorithm 
Kru�����
If we then remove the heaviest edge in the minimum
spanning tree� the two components which result have
an ��n��� chance of de�ning a particular min�cut�

� Sequential Implementation

Our most interesting new results are in the parallel ver�
sion of this algorithm� however� it is easier to explain
certain concepts by describing a sequential implemen�
tation and then showing how to parallelize it� To show
how to implement the Contraction Algorithm� we need
only show how to implement a single trial� since it is
simple to remember the best result which occurs during

the O�n� logn� trials� We begin by presenting a sim�
ple method for unweighted graphs� and then show how
to improve the running time by working a little harder�
We then extend to the case of graphs with polynomi�
ally bounded edge weights� and �nally to arbitrarily
weighted graphs�

��� Unweighted Graphs� A minor reformulation
of the Contraction Algorithm is convenient� If we per�
formed contractions one at a time� we would need to use
complex data structures to update the adjacency lists
of the graph� Instead� we simulate the performance of
many contractions at once� We begin by generating a
random permutation of the edges� Imagine contracting
edges in the order in which they appear in the permu�
tation� until only two vertices remain� This is clearly
equivalent to the �rst formulation of the Contraction Al�
gorithm� We can immediately say that with probability
��n���� a random permutation will yield a contraction
to two vertices which determine a particular min�cut�

Consider any such permutation� It has a pre�x such
that the set of edges in this pre�x induces two connected
components which are the two sides of the min�cut�
All we need to do is determine how long the pre�x is�
Binary search solves this problem� because any pre�x
which is too short will yield more than two connected
components� and any pre�x which is too long will yield
only one� The correct pre�x can therefore be determined
using logm connected component computations� each
requiring O�m� time� The total running time of the
trial is therefore O�m logm��

We can improve this running time by taking better
advantage of the connected component computations�
Given the permutation� use O�m� time to identify the
connected components induced by the �rst m�
 edges�
If only one connected component is induced� then we
can discard the last m�
 edges because the desired
pre�x ends before the middle edge� If not� then we can
contract the �rst m�
 edges all at once in O�m� time
by �nding connected components� and search for the
correct pre�x in the remaining m�
 edges� Either way�
in O�m� time� we have reduced the problem size tom�
�
Thus we �nish inO�m��O�m�
��O�m����� � � � O�m�
time�

The two methods described above both require
O�m� space� We can improve this bound to O�n�
space if we are willing to sacri�ce some time� The
only part of the algorithm which requires O�m� space
is the generation of an edge permutation� If� instead�
the edges are stored in read�only memory� we can avoid
generating the permutation� We use the union��nd data
structure of 
AHU��� to identify sets of vertices which
have been contracted together� We choose an edge at

�



random� and apply a union operation to its endpoints�
sets if they do not already belong to the same set�
We continue until only two sets remain� We have a
high probability of choosing every edge at least once
after makingO�m logm� choices� and we will necessarily
contract the graph to two vertices some time before this�
Each choice requires one �nd operation� and we will also
perform a total of n�
 union operations� Therefore the
total running time of a trial will be O�m logm�� The use
of path compression in the union��nd data structure
provides no improvement in the running time� which
is dominated by the requirement that every edge be
sampled at least once�

Corollary ���� With high probability� the Con�
traction Algorithm �nds all min�cuts of an multigraph
with m edges and n vertices in time O�mn� logn� and
space O�m�� or in time O�mn� log� n� if space is re�
stricted to be O�n��

��� Weighted Graphs� It is easy to apply the
Contraction Algorithm to integer weighted graphs	 just
treat an edge of weight w as a collection of w parallel
edges� This might appear to cause the running time
to become dependent on the sum of the edge weights�
but we show how to avoid this� We begin by assuming
that edge weights are integers with maximum value
polynomial in the problem size� and then clear up a
few details to make the algorithm strongly polynomial�

Observe that the entire edge permutation is not nec�
essary in the computation� since as soon as a multigraph
edge is contracted� all the other edges with the same
endpoints vanish� In fact� all that matters is the earliest
place in the permutation that an edge with particular
endpoints appears� This information su�ces to tell us
in which order vertices of the graph are contracted	 we
contract u and v before w and x precisely when the �rst
�u� v� edge in the permutation precedes the �rst �w� x�
edge in the permutation� Thus our goal is to generate an
edge permutation whose distribution re�ects the order
of �rst appearance of endpoints in a uniform permu�
tation of the corresponding multigraph edges� We can
then use the permutation to contract the graph in the
same fashion as was described for unweighted graphs�

We present two separate methods for generating a
permutation� While they may not be the best possible
sequential algorithms� they have the advantage of being
easy to parallelize�

����� Exponential Variates� The �rst method is to
directly model the weighted graph as a multigraph� One
way we can generate a permutation of the multigraph
edges is by assigning a uniform random score to each
edge and sorting according to score� In this case�

the �rst appearance of a multigraph edge with w
copies is determined by the minimum of w randomly
chosen scores� Consider multiplying each edge by a
large constant weight k� so that an edge of weight w
corresponds to wk multigraph edges� This scales the
value of the min�cut without changing its structure�
Suppose we gave each multigraph edge a score chosen
uniformly at random from the continuous interval 
�� k��
The probability distribution for the minimum score X
among wk edges is then

Pr
X � t� � ��� t�k�wk�

If we now let k become arbitrarily large� the distribution
converges to one in which an edge of weight w receives
a score chosen from the exponential distribution

Pr
X � t� � e�wt�

If we can generate an exponential random variable in
O��� time� then we can simulate a permutation in
O�m� time �note that we do not actually have to sort
based on the scores	 we can use median �nding to do
a binary search of the edges in O�m� time� as was
described in Section ����� If all we have is coin �ips�
it is possible to use them to generate approximately
exponential distributions in polylogarithmic time and
introduce a negligible error in the computation� This
technique will be described in the full paper�

����� Iterated Sampling� Our second method
avoids the mathematical computations needed to gen�
erate exponential variates if one has access only to coin
�ips or uniform integer distributions� We repeatedly
simulate the uniform selection of a multigraph edge by
choosing from the graph edges with probabilities pro�
portional to the edge weights� the order of selection
then determines the order of �rst appearance of multi�
graph edges� The following procedure can be used to
choose one edge� First� from edge weights w�� � � � � wm�
construct cumulative weights Wk �

Pk
i��wi� Then

choose an integer r uniformly at random from �� � � � �Wm

and use binary search to identify the edge ei such that
Wi�� � r � Wi�

Once the cumulative weights are known� choosing
an edge takes O�logn� time �based on the present
assumption that Wm is polynomial in n�� Since it takes
linear time to recompute the cumulative distribution� it
is undesirable to do this each time we wish to sample
an edge� An alternative approach is to keep sampling
from the original cumulative distribution� and ignore
edges if we sample them more than once� Unfortunately�
to ensure that all edges have been sampled once� we
expect to need a number of samples equal to the sum of

�



the edge weights� We solve this problem by combining
the two approaches and recomputing the cumulative
distribution only occasionally� We use the following
lemma	

Lemma ���� With high probability� �weighted� sam�
pling m times from a set of at most m edges yields a set
of edges whose total weight is more than ��� of the total
weight of the entire set of edges�

Proof� If the outcome of the lemma does not occur�
there must be some set of edges which contains 
�� of
the total weight� such that no edge in this set is sampled�
The probability of this happening is ���m� Since there
are only 
m di�erent sets of edges� the probability that
this happens with some set of edges is at most 
m��m�
which is negligible�

We can therefore apply the procedure of Figure ��
A single iteration of this loop takes O�m logm� time�

repeat until no edges remain

� compute the cumulative weight measures�

� extend the permutation with m samples
from the remaining edges�

� remove edges which were sampled at least
once

Figure �	 Generating a Permutation

If the total weight of edges polynomial in n� then
Lemma ��� shows that O�logn� iterations of the loop
ensure that the total remaining weight of unsampled
edges is less than �� i�e� no edges remain and we have
�nished constructing a permutation�

We remark that the O�n� space bound discussed for
unweighted graphs can be achieved here as well� As be�
fore� we use the union��nd data structure of 
AHU��� to
contract edges as we select them� Instead of maintaining
a list of all unsampled edges� we maintain a threshold
X�t� such that any edge of weight exceeding X�t� has a
high probability of being sampled within t trials� After
time t we sample only from among those edges which
have weight less than this threshold�

��� Strong Polynomiality� The exponential vari�
able technique for generating permutations can be made
strongly polynomial by approximating the exponential
distribution appropriately� however� we will focus on the
second technique�

Construction of the cumulative edge weights is
easily strongly polynomial� To quickly select an edge
from the cumulative distribution� even if the edge
weights are large� let M � nO��	� generate s uniformly
at random from �� � � � �M � and choose the edge i such

that Wi�� � Wms�M � Wi� We have only a
polynomially small probability of having a di�erent
result than we would if we used exact arithmetic�
since such an error is introduced only if Wms�M and
Wm�s � ���M specify di�erent edges�

We also need to ensure that not too many iterations
of the permutation generating loop of Figure � are
needed� We use a very rough approximation to the
min�cut to ensure that O�logn� iterations su�ce even
when the edge weights are large� Let W be the largest
edge weight such that the set of edges of weight greater
than or equal to W connects all of G� This is just the
minimum weight of an edge in a maximum spanning
tree of G� and can thus be identi�ed in O�m � n logn�
time 
FT���� It follows that any cut of the graph must
cut an edge of weight at least W � so the min�cut has
weight at least W � It also follows from the de�nition
of W that there is a cut which does not cut any edge
of weight exceeding W � This means the min�cut has
weight less than n�W � since fewer than n� edges are
in the graph� and at worst all edges of weight at most
W are cut� This guarantees that no edge of weight
exceeding n�W can possibly be in the min�cut� We can
therefore contract all such edges� without eliminating
any min�cut in the graph� Afterwards the total weight
of edges in the graph is at most n�W �

Since initially the total weight of edges was at
most n�W � Lemma ��� proves that the amount of
weight remaining unsampled after O�logn� iterations of
Figure � is less than W � It follows that the portion of
the permutation which we have constructed at this point
must su�ce to contract the graph to a single vertex�
since otherwise we would have a cut of weight less than
W �it could cut only the unsampled edges�� which is
less than the min�cut� We can therefore ignore the
remaining unsampled edges and use the permutation
pre�x which we have constructed so far�

Corollary ���� A single Contraction Algorithm
trial on weighted graphs can be run in strongly poly�
nomial O�m log� n� time� so the Contraction Algorithm
can be run in O�mn� log� n� time�

� Parallel Complexity of Min�cut

This section demonstrates a signi�cant di�erence in
the complexity of the min�cut problem on directed
and undirected graphs� Our parallelization of the
Contraction Algorithm proves the the undirected min�
cut problem is in RNC� On the other hand� we show
that the global min�cut problem on directed graphs is
P�complete�

��� Parallel Implementation� We now show how
to parallelize the Contraction Algorithm to give an

�



O�log� n� time parallel algorithm which uses mn� logn
processors� As before� the only real question is how to
run a single trial of the Contraction Algorithm� since it
is simple to run O�n� logn� trials in parallel and com�
bine their results� We implement a trial as in the se�
quential case� by generating a permutation of the edges
and contracting based on that permutation� RNC al�
gorithms for connected components exist which run
in O�logn� time on a CRCW PRAM 
Gaz��� or in
O�logn log logn� time on an EREW PRAM 
KPN�
��
and use O�m� processors� There is therefore no dif�
�culty in performing the binary search on connected
components which was described in the sequential algo�
rithm� Thus we need only show how a linear number
of processors can be used to generate an appropriately
distributed permutation�

In the case of an unweighted graph� generating a
permutation is trivial� Each processor takes one edge
and assigns it a score chosen uniformly at random from
the integers �� � � � � n� �this large range guarantees that
with high probability no two edges get the same score��
We then sort the edges according to score in O�logn�
time �using� e�g�� Cole�s algorithm 
Col����� All of this
requires only m processors per trial� This yields the
result for unweighted graphs	

Theorem ���� All min�cuts in an unweighted
multigraph can be found in O�log� n� time using
mn� logn CRCW processors�

The bottleneck in the runtime is caused by the
binary search for connected components� If we in�
crease the number of processors to m�n� logn� we
can examine all pre�xes of each permutation in par�
allel and achieve a running time of O�logn�� even on
an EREW PRAM� This matches the ��logn� EREW
lower bound of 
CDR���� and closely approaches the
��logn� log logn� CRCW lower bound of 
Has����

It remains to generalize the algorithm to the case
of weighted graphs� We do this by parallelizing the se�
quential methods described in Section �� The reduction
to small edge weights can be parallelized using� for ex�
ample� the parallel maximum spanning tree algorithm
of 
AS��� and the connected components algorithms de�
scribed above� Once edge weights are small� permuta�
tion by assignment of exponentially distributed scores is
simple to parallelize using a parallel sorting algorithm�
It is also straightforward to parallelize a single itera�
tion of the weighted sampling loop used in our second
method� by assigning one processor to perform each of
the m selections described there�

Theorem ���� The min�cut problem on arbitrarily
weighted graphs can be solved in RNC in O�log� n� time
using mn� logn CRCW processors�

��� Comparison to Directed Graphs� The previ�
ous result shows a fundamental distinction between the
min�cut problems on directed and undirected graphs�
The s�t min�cut problem on directed graphs was shown
to be P�complete 
GSS�
�� A simple reduction shows
that the global min�cut problem is also P�complete for
directed graphs� To �nd a minimum s�t cut using a
global min�cut algorithm� simply add� for each vertex
v� directed edges of in�nite weight from t to v and from
v to s� The global min�cut in this modi�ed graph must
have s on the inside and t on the outside and thus cor�
responds to the minimum s�t cut in the original graph�

The min�cut problem is therefore in the fam�
ily of problems� such as reachability 
NSW�
�� which
presently have dramatically di�erent di�culties on di�
rected and undirected graphs�

� Extensions of the Algorithm

��� Approximating the Min�cut� If we are look�
ing only for a �small� cut� then it is possible to sig�
ni�cantly reduce the amount of work required in the
algorithm�

Theorem ���� With probability n���k� a single
trial of the Contraction Algorithm will yield a cut of
weight kc�

Proof� We return to the unweighted multigraph
discussion� We again �x our attention on a particular
min�cut� Suppose that at some point we have contracted
to r vertices and have not yet seen a vertex of degree less
than kc �if we have� than we have a corresponding cut of
the desired size�� Then the total number of edges in the
graph is at least kc�
� It follows that we pick a min�cut
edge with probability 
�kr� Arguing as before� it follows
that our probability of success over n � 
 iterations is
at least

nY
u��

��� 


ku
� � exp�

nX
i��

ln��� 


ki
��

� exp��
nX
i��




ki
�

� e��� lnn�k	

� ��n���k��

Corollary ���� A cut within a factor of k of
the min�cut can be found with high probability in
O�mn��k logn� time�

Proof� Because of the above theorem� we need
only show that we can identify the smallest degree
metavertex which arises during the contraction process�

�



Recall that the Contraction Algorithm can be simulated
by assigning random ranks and running a minimum
spanning tree algorithm� Given the minimum spanning
tree� it is relatively simple to identify the smallest vertex
which arose from a contraction� Details are left for the
full paper�

��� A Time�Processor Tradeo�� The Contraction
Algorithm may be e�ective in practice as a way to
parallelize sequential min�cut algorithms� The key
observation is that if we only contract the graph until
it has been reduced to s vertices� then a particular
min�cut survives with probability ���s�n��� �this is a
simple extension of the original proof of correctness��
This contracted graph will have at most min�m� s��
edges� Assuming the min�cut survives� we can �nd it
by running a sequential min�cut algorithm for a graph
of size s� It follows that the Contraction Algorithm
can be used by p processors to accelerate any sequential
weighted graph algorithm by a factor of

p
p�

��� Fewer Processors for Unweighted Graphs�

In the case of unweighted graphs� we can reduce the
processor cost from mn� to n�c� This provides no
improvement in the worst case� since a graph with
min�cut c may have as few as nc�
 edges� but it does
improve performance on dense graphs with small min�
cuts� This improvement is achieved by transforming
the graph into one with �O�nc� edges� and running the
original algorithm� We use the following lemma	

Lemma ���� If each edge of a graph is marked inde�
pendently with probability p� and connected components
induced by the marked edges are contracted� then with
high probability the number of edges of the contracted
graph is O�n lnn�p��

Proof� The number of edges in the contracted graph
is just the number of edges crossing between two dif�
ferent connected components induced by the marked
edges� The number of di�erent arrangements of con�
nected components is certainly no more than the num�
ber of ways to partition the set of n vertices into at most
n groups� namely nn� For any given partition which cuts
k edges� the probability that no crossing edge is chosen
is �� � p�k � e�kp� The probability that k edges are
cut in the partition resulting from the connected com�
ponent construction is just the probability that for some
partition with at least k crossing edges� no one of these
k edges is chosen� This is at most nne�kp � en lnn�kp�
which is negligible when kp � ��n lnn��

We apply this lemma to our problem by letting
the probability p in the lemma be ��c� If we mark
edges and contract components which are connected
by marked edges� then any particular min�cut has a

constant probability of having none of its edges chosen�
If this happens� then this min�cut will still be a min�
cut in the contracted graph� It will happen with high
probability after only O�logn� trials� In each trial� the
lemma proves that the contracted graph will contain
�O�nc� edges� We then apply the Contraction algorithm�
using �O�n�� trials on a graph of �O�nc� edges� yielding
a total processor cost of �O�n�c��

��� Cactus Representation For Min�Cuts� The
set of all min�cuts in a graph has a simple and compact
representation known as the cactus representation� The
best presently known sequential algorithmfor construct�
ing the cactus �
NK�
�� runs in time O�mn�� Naor and
Vazirani 
NV��� have shown how to construct this cac�
tus representation inRNC when edge weights are repre�
sented in unary� The processor cost for their algorithm
is mn���� Both the processor cost and the restriction to
unary edge weights stem from the same source� namely
the need for an algorithm to compute individual min�
cuts in RNC� They use the algorithm of 
KUW���� If
we instead use the Contraction Algorithm� both of these
problems are eliminated� We therefore deduce	

Theorem ���� The cactus representation of an ar�
bitrarily weighted graph can be computed in RNC using
mn� logn processors�

� Combinatorial Rami	cations

We now use the Contraction Algorithm to prove several
interesting facts about the combinatorial structure of
cuts in a graph� In particular� we show bounds on
the number of small cuts in a graph� Vazirani and
Yannakakis 
VY�
� perform a similar investigation with
di�erent results�

Theorem ���� The number of min�cuts in an ar�
bitrarily weighted graph is at most

�
n
�

�
�

Proof� The Contraction Algorithm can be viewed
as a procedure for randomly generating cuts� We
proved that any particular min�cut is generated with

probability at least p �
�
n
�

���
� It follows that there can

be at most ��p min�cuts�

We can perform a similar analysis of larger cuts	

Theorem ���� For k half an integer� the number
of cuts of weight at most k times the graph min�cut is
at most 
�k��

�
n
�k

�
� which is less than n�k�

Proof� We consider the unweighted case� the exten�
sion to weights goes as before� Let k be half an integer�
and c the min�cut� and consider some cut of weight at
most kc� Suppose we run the Contraction Algorithm�
If with r vertices remaining we choose a random edge�
then since the number of edges is at least cr�
� we take
an edge from the min�cut with probability at most 
k�r�

�



If we do this until r � 
k� then the probability that the
cut survives is

��� 
k

n
���� 
k

�n� ��
� � � � ��� 
k

�
k � ��
� �

�
n


k

���

We can again use the algorithm to generate a random
cut� although we must now add an extra step� Since
we stop before the number of vertices reaches 
� we
still have to �nish selecting a cut� Do so by randomly
partitioning the remaining vertices into two groups�
Since there are less than 
�k�� partitions� it follows that
the probability of a particular cut being chosen is at

least 
���k
�
n
�k

���
�

When k � n�
 we can apply the obvious upper
bound of 
n�� to the number of cuts of this size�

Corollary ���� For arbitrary real values of k� the
number of cuts of size less than k times the min�cut is
O�n�k��

Proof� Full Paper�

Vazirani and Yannakakis 
VY�
� derive bounds
based on the rank of a cut relative to the others� we
instead derive bounds based on the value of a cut
relative to the others� Thus neither bound dominates
the other�

Corollary ���� The problem of enumerating all
cuts within any constant factor of the min�cut is in
RNC�

Consider the complete n�vertex graph in the context
of these results� The min�cut there has value n��� Any
set of k vertices de�nes a cut of about kn edges� Thus
the number of cuts of size about kn is

�
n
k

�
� a result which

is strikingly close to the one we have derived� The cycle
graph shows an even closer match for the case c � 

and k an integer� Such a graph has

�
n
�k

�
cuts of size 
k�

since every choice of 
k edges de�nes such a cut�


 Network Reliability

From the cut counting theorem we can deduce a useful
fact about the ability of graphs with large min�cuts
to resist being separated� In 
Col���� the relationship
between the min�cut and graph reliability is investigated
in great detail� however� this result is of a di�erent
�avor	

Theorem ���� If each edge of a graph with min�
cut c is removed with probability p � n�a�c� then
the probability that the graph becomes disconnected is
O�n�pc��a� 
���

Proof� In order for the graph to be disconnected�
some cut must have all its edges eliminated� We
therefore bound the probability that all the edges in any
cut are eliminated� A cut of weight �c has probability

at most p�c of having all of its edges eliminated� Let
f��� be the number of cuts of weight �c� Recall that
for some constant ��

F ��� �
X
���

f��� � �n���

Let C denote the set of all cuts� The probability of
disconnection is at mostX
C�C

Pr
all edges of C are eliminated� �
X
�

f���p�c�

Since p�c is decreasing with �� a perturbation argument
shows that to maximize the sum� it is desirable to have
as much of the mass of f as possible at small values
of �� In other words� we want as many small cuts as
possible� so F ��� should be maximized at every value
of � �subject to the constraints�� If we remove the
restriction that f be discrete and integer valued� then
we can take f��� � �n� and F ��� � �n�� for � � ��
Then the sum is bounded by

�n�pc �

Z �

�

�
�

��
�n���p�c d� � �n�pc � �n�pc��a� 
��

Note that for large c� n�a�c � � � a lnn�c� We
have thus shown that if we kill edges with probability
� � � lnn�c� the graph is disconnected with probability
O���n�� On the other hand� if we kill edges with
probability ����c� then the graph is disconnected with
constant probability�

Consider the complete graph� Choosing to kill edges
with probability �� ��lnn�n� corresponds to choosing
a random graph from Gn�p with p � ��lnn�n�� It
is well known 
Bol��� that p � ��lnn�n� is precisely
the threshold at which the complete graph becomes
connected with high probability� This result is extended
by Margulis 
Mar���� who shows that every graph has a
connectivity threshold� however� this paper appears to
be the �rst to explicitly describe the threshold function�

Corollary ���� In a weighted graph� if each edge
of weight w fails with probability n������	w�c� then the
graph remains connected with probability ��O�n���	��

Proof� Apply the above theorem to the multigraph
corresponding to the weighted graph�

This gives a method for analyzing the reliability of
a given network�

Corollary ���� Suppose in an n�vertex network
each edge e has failure probability pe� Assign to edge
e a weight � logn pe� The network failure probability is
O�n��c�� where c is the min�cut of the weighted graph�

Proof� Network edge e fails with probability pe �
n�we � n��cwe	�c� which precisely simulates the
weighted failure criteria in the previous corollary�

�



We use the following lemma to prove the next
corollary	

Lemma ���� If �A�B� is a min�cut of weight c� then
the subgraphs induced by the vertex sets A and B each
have min�cut at least c�
�

Proof� Full Paper�

Corollary ���� If all edges of a graph are killed
with probability �n logn����c� then with probability
���n logn����� the resulting graph has two connected
components� each of which is one side of a min�cut�

Consider a graph G with min�cut c� and consider the
two subgraphs A and B induced by the two sides of the
min�cut� By Lemma ���� each subgraph has min�cut at
least c�
� Killing edges with probability �n logn����c �
�n logn�����c��	 ensures that with constant probability
A and B are each connected� Independent of this�
with probability �n logn���� all edges of the min�cut
are killed�

� Multi�way Cuts

With a small change� the Contraction Algorithm can
be used to �nd a minimum weight r�way cut� which
partitions the graph into r pieces rather than 
� The
analysis need be only slightly changed�

Theorem ���� Stopping the Contraction Algo�
rithm when r vertices remain yields a particular min�
imum r�way cut with probability at least

r

�
n

r � �

����
n� �

r � �

���
�

Proof� As before� the key to the analysis is bound�
ing the probability p that a randomly selected graph
edge is from a particular minimal r�cut� Suppose we
choose r�� vertices uniformly at random� and consider
the r�cut de�ned by taking each of the vertices as one
member of the cut and all the other vertices as the last
member� Let f be the number of edges cut by this ran�
dom partition� and m the number of graphs edges� The
number of edges we expect to cut is

E
f � � 
�� ��� r � �

n
���� r � �

n� �
��m�

since the quantify in brackets is just the probability that
a single edge is cut� Since f can be no less than the value
of the minimal r�cut� E
f � must also be no less than the
min�cut� We can therefore deduce that the probability
that a particular minimum r�cut survives the reduction
process until there are r vertices remaining is at least

nY
u�r��

��� r � �

u
���� r � �

u� �
�

�
nY

u�r��

��� r � �

u
�

nY
u�r��

��� r � �

u� �
�

� r

�
n

r � �

����
n� �

r � �

���
�

This analysis yields a simple �O�mn�r��� �sequen�
tial time or parallel processor� algorithm for �nding
a minimal r�way cut� This is a signi�cant improve�
ment on the previously best known sequential result of
O�nr

�
�r������ reported in 
GH���� As before� our algo�

rithm in fact �nds all the minimal r�way cuts�

Corollary ���� The number of minimum r�cuts
of a graph is no more than �

r

�
n

r��

��
n��
r��

�
� which is

O�n��r��	��

Corollary ���� The number of r�cuts within a
factor of k of the optimum is O�n�k�r��	��

Corollary ���� Enumerating all the r�way cuts
within any constant factor of the optimum is in RNC
for any constant r�

� Open Questions

The min�cut problem has long been known to be P�
complete� However� the reduction of 
GSS�
� showed
this to be true only for directed graphs� This paper
shows that for undirected graphs the situation is entirely
di�erent� and that much remains to be done in this area�
In particular� we have shown that the min�cut problem
for undirected graphs is in RNC� This immediately
suggests that a similar result may be possible for the
s�t min�cut problem on undirected graphs�

Questions are also raised regarding the closely re�
lated problem of max��ow� Unlike many min�cut al�
gorithms� the Contraction Algorithm makes no use of
max��ow computations� Is this an accident� or is the
max��ow problem not parallelizable� Is it possible to
use a min�cut algorithm in a non�trivial way as a com�
ponent of a max��ow algorithm� If not� in what sense is
the min�cut problem fundamentally easier than that of
max��ow� In particular� what is the complexity �RNC�
P�complete�� of �nding a max��ow corresponding to a
global min�cut�

The Contraction Algorithm uses a very simple rule
to �nd min�cuts in a graph� Further analysis of the
Contraction Algorithm may suggest more intelligent
schemes for choosing edges� The goal� of course�
would be to increase the success probability of the
algorithm so as to decrease the number of trials needed�
Another signi�cant accomplishment would be to �nd a
deterministic edge contraction rule which places min�cut
in NC�

�



�
 Acknowledgement

Many thanks to Serge Plotkin� who has given a great
deal of his time and asked numerous helpful questions
related to this research� Thanks also to Daphne Koller
who suggested numerous clari�cations of the exposi�
tion�

References

�AHU��� Alfred V� Aho� John E� Hopcroft� and Je�rey D�
Ullman� Data Structures and Algorithms� Addison
Wesley� �����

�AS�	� Baruch Awerbuch and Y� Shiloach� 
New connec�
tivity and msf algorithms for shu�e�exchange net�
work and pram
� IEEE Transactions on Computers�
����������������� October ���	�

�Bol��� Bela Bollobas� Random Graphs� Harcourt Brace
Janovich� �����

�CDR��� S� Cook� Cynthia Dwork� and R� Reischuk� 
Up�
per and lower bounds for parallel random access ma�
chines without simultaneous writes
� SIAM Journal

on Computing� February �����
�Col�	� Charles J� Colbourn� The Combinatorics of Net�

work Reliability� volume � of The International Series

of Monographs on Computer Science� Oxford Univer�
sity Press� ���	�

�Col��� R� Cole� 
Parallel merge�sort
� SIAM Journal of

Computing� �	����		��	��� August �����
�DJP���� E� Dahlhaus� D� S� Johnson� C� H� Papadimitriou�

P� D� Seymour� and M� Yannakakis� 
The complexity
of multiway cuts
� In Proceedings of the ��th ACM

Symposium on Theory of Computing� pages ��������
ACM Press� May �����

�FF��� L� R� Ford� Jr� and D� R� Fulkerson� Maximal
Flow Through a Network� Canadian Journal of Math��
���������� �����

�FF��� L� R� Ford� Jr� and D� R� Fulkerson� Flows in

Networks� Princeton Univ� Press� Princeton� NJ� �����
�FT��� M� L� Fredman and R� E� Tarjan� 
Fibonacci

heaps and their uses in improved network optimization
algorithms
� Journal of the ACM� ����������� �����

�Gab��� Harold N� Gabow� 
A matroid approach to �nding
edge connectivity and packing arborescences
� In
Proceedings of the ��rd Annual Symposium on Theory

of Computing� ACM Press� May �����
�Gaz��� H� Gazit� 
An optimal randomized parallel algo�

rithm for �nding connected components in a graph
�
In Proceedings of the �	th Annual Symposium on Foun�

dations of Computer Science� ACM Press� �����
�GH��� Oliver Goldschmidt and Dorit Hochbaum� 
Poly�

nomial algorithm for the k�cut problem
� In Proceed�

ings of the ��th Annual Symposum on the Foundations

of Computer Science� pages �������� IEEE Computer
Society Press� �����

�GP��� Zvi Galil and Victor Pan� 
Improved processor
bounds for combinatorial problems in RNC
� Com�

binatorica� ���������� �����
�GSS��� L� M� Goldschlager� R� A� Shaw� and J� Staples�


The maximum �ow problem is logspace complete for
P
� Theoretical Computer Science� ����������� �����

�GT��� Andrew V� Goldberg and Robert Endre Tarjan� 
A
new approach to the maximum �ow problem� Journal
of the ACM� ����������� �����

�Has��� Johann Hastad� 
Improved lower bounds for small
depth circuits� In Proceedings of the ��th Annual ACM

Symposium on Theory of Computing� pages ����� ACM
Press� �����

�HO��� J� Hao and J� B� Orlin� 
A faster algorithm for
�nding the minimum cut in a graph
� In Proceedings

of the �rd Annual Symposium on Discrete Algorithms�
pages �����	�� �����

�KPN��� David Karger� Michal Parnas� and Noam Nissan�

Fast connected components algorithms for the EREW
PRAM
� In Proceedings of the �th Annual ACM�SIAM

Symposium on Parallel Algorithms and Architectures�
pages �����	�� �����

�Kru��� J� B� Kruskal� Jr� 
On the shortest spanning
subtree of a graph and the traveling salesman problem�
Proceedings of the American Mathematical Society�
	���������� �����

�KUW��� Richard M� Karp� Eli Upfal� and Avi Wigderson�

Constructing a perfect matching is in random NC�
Combinatorica� ����������� �����

�Mar	�� G� A� Margulis� 
Probabilistic characteristics of
graphs with large connectivity �translated from rus�
sian�
� Problems in Information Transmission� ������
���� ��	��

�MVV�	� Ketan Mulmuley� Umesh V� Vazirani� and Vi�
jay V� Vazirani� 
Matching is as easy as matrix in�
version
� Combinatorica� 	������������ ���	�

�NI��� Hiroshi Nagamochi and Toshihde Ibaraki� 
Com�
puting edge connectivity in multigraphs and capaci�
tated graphs
� SIAM Journal of Discrete Mathemat�

ics� ����������� February �����
�NK��� Hiroshi Nagamochi and Tiko Kameda� 
An e�cient

construction of cactus representation for minimum cuts
in undirected networks
� Manuscript� �����

�NSW��� Noam Nissan� Endre Szemeredi� and Avi Wigder�
son� 
Undirected connectivity in o�log���n� space
� In
Proceedings of the ��rd Annual Symposium on Foun�

dations of Computer Science� pages ������ IEEE Com�
puter Society Press� October �����

�NV��� Dalit Naor and Vijay V� Vazirani� 
Representing
and enumerating edge connectivity cuts in RNC
� In
F� Dehne� J� R� Sack� and N� Santoro� editors� Pro�
ceedings of the �nd Workshop on Algorithms and Data

Structures� volume ��� of Lecture Notes in Computer

Science� pages �	������ Springer�Verlag� August �����
�VY��� Vijay V� Vazirani and Mihalis Yannakakis� 
Subop�

timal cuts� Their enumeration� weight� and number
�
In The ��th International Colloquium on Automata�

Languages and Programming� volume ��� of Lecture
Notes in Computer Science� pages �����		� Springer�
Verlag� �����

��


