Network models: random graphs

Leonid E. Zhukov

School of Applied Mathematics and Information Science National Research University Higher School of Economics
27.01.2013

НАЦИОНАПЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УнИВЕРСИТЕТ

Network models

Empirical network features:

- Power-law (heavy-tailed) degree destribution
- Small average distance (graph diameter)
- Large clustering coefficient (transitivity)
- Giant connected component, hierachical structure,etc

Generative models:

- Random graph model (Erdos \& Renyi, 1959)
- "Small world" model (Watts \& Strogatz, 1998)
- Preferntial Attachement model (Barabasi \& Albert, 1999)

Random Graph models

Graph $G\{E, V\}$, nodes $n=|V|$, edges $m=|E|$
Erdos and Renyi, 1959.
Random graph models

- $G_{n, m}$, a randomly selected graph from the set of $C_{n(n-1) / 2}^{m}$ graphs with n nodes and m edges
- $G_{n, p}$, each pair out of $n(n-1) / 2$ pairs of nodes is connected with probability p, m - random number

$$
\begin{gathered}
\langle m\rangle=p \frac{n(n-1)}{2} \\
\langle k\rangle=\frac{1}{n} \sum_{i} k_{i}=\frac{2\langle m\rangle}{n}=p(n-1) \approx p n \\
\rho=\frac{\langle m\rangle}{n(n-1) / 2}=p
\end{gathered}
$$

Random Graph models

- Probability that i-th node has a degree $k_{i}=k$

$$
P\left(k_{i}=k\right)=P(k)=C_{n-1}^{k} p^{k}(1-p)^{n-1-k}
$$

(Bernoulli distribution)
p^{k} - probability that connects to k nodes (has k-edges)
$(1-p)^{n-k-1}$ - probability that does not connect to any other node C_{n-1}^{k} - number of ways to select k nodes out of all to connect to

- Limiting case of Bernoulli distribution, when $n \rightarrow \infty$ at fixed $\langle k\rangle=p n=\lambda$

$$
P(k)=\frac{\langle k\rangle^{k} e^{-\langle k\rangle}}{k!}=\frac{\lambda^{k} e^{-\lambda}}{k!}
$$

(Poisson distribution)

Poisson Distribution

Phase transition

Consider $G_{n, p}$ as a function of p

- $p=0$, empty graph
- $p=1$, complete (full) graph
- There are exist critical p_{c}, structural changes from $p<p_{c}$ to $p>p_{c}$
- Gigantic connected component appears at $p>p_{c}$

Random graph model

$$
\begin{aligned}
& p<p_{c} \\
& p=p_{c}
\end{aligned}
$$

Random graph model

$p>p_{c}$

$p \gg p_{c}$

Phase transition

Let u - fraction of nodes that do not belong to GCC. The probability that a node does not belong to GCC

$$
\begin{aligned}
u & =P(k=1) \cdot u+P(k=2) \cdot u^{2}+P(k=3) \cdot u^{3} \ldots= \\
& =\sum_{k=0}^{\infty} P(k) u^{k}=\sum_{k=0} \frac{\lambda^{k} e^{-\lambda}}{k!} u^{k}=e^{-\lambda} e^{\lambda u}=e^{\lambda(u-1)}
\end{aligned}
$$

Let s-fraction of nodes belonging to GCC (size of GCC)

$$
\begin{gathered}
s=1-u \\
1-s=e^{-\lambda s}
\end{gathered}
$$

when $\lambda \rightarrow \infty, \quad s \rightarrow 1$ when $\lambda \rightarrow 0, s \rightarrow 0$

$$
(\lambda=p n)
$$

Phase transition

$$
s=1-e^{-\lambda s}
$$

non-zero solution exists when (at $s=0$):

$$
\lambda e^{-\lambda s}>1
$$

critical value:

$$
\begin{gathered}
\lambda_{c}=1 \\
\lambda_{c}=p_{c} n=1, \quad p_{c}=\frac{1}{n}
\end{gathered}
$$

Phase transition

Phase transition

Graph $G(n, p)$, for $n \rightarrow \infty$, critical value $p_{c}=1 / n$

- when $p<p_{c},(\langle k\rangle<1)$ there is no components with more than $O(\ln n)$ nodes, largest component is a tree
- when $p=p_{c},(\langle k\rangle=1)$ the largest component has $O\left(n^{2 / 3}\right)$ nodes
- when $p>p_{c},(\langle k\rangle>1)$ gigantic component has all $O(n)$ nodes

Critical value: $\langle k\rangle=p_{c} n=1$ - on average one neighbor for a node

Threshold probabilities

Graph $G(n, p)$
Threshold probabilities when different subgraphs of g-nodes appear in a random graph

- $p_{c} \sim n^{-g /(g-1)}$, having a tree of order g
- $p_{c} \sim n^{-1}$, having a cycle of order g
- $p_{c} \sim n^{-2 /(g-1)}$, complete subgraph of order g

Graph diameter

- On average, the number of nodes s steps away from a node $\langle k\rangle^{s}=\lambda^{s}$

- If graph is a tree (GCC, around p_{c}), $\lambda^{d} \sim n, d \sim \frac{\ln n}{\ln \lambda}$
- $P\left(d_{i j}>s+t+1\right)$ - probability, that there is no edge between the surfaces
- $P\left(d_{i j}>s+t+1\right)=(1-p)^{\lambda^{s+t}}$, where $\lambda^{s} \lambda^{t}$ total number of possible pairs from different groups

Graph diameter

- define $I=s+t+1$
- $P\left(d_{i j}>l\right)=(1-p)^{\lambda^{\prime-1}}=\left(1-\frac{\lambda}{n}\right)^{\lambda^{I-1}}$
$\ln P\left(d_{i j}>I\right)=\lambda^{I-1} \ln \left(1-\frac{\lambda}{n}\right)=-\frac{\lambda^{\prime}}{n}$
$P\left(d_{i j}>l\right)=\exp \left(-\frac{\lambda^{\prime}}{n}\right)$
- Graph diameter is the smallest value I such that $P\left(d_{i j}>I\right)=0$, i.e no matter which pair of nodes we pick, there is zero chance to be separated by greater distance, $\lambda^{\prime}=a n$, should grow faster than n
- $d=\min (I)=\frac{\ln a}{\ln \lambda}+\frac{\ln n}{\ln \lambda}=A+\frac{\ln n}{\ln \lambda}$
- Graph diameter when $p \geq p_{c}(\lambda=\langle k\rangle=p n)$:

$$
d=\frac{\ln n}{\ln \langle k\rangle}
$$

Clustering coefficient

- Clustering coefficient

$$
\begin{gathered}
C(k)=\frac{\# \text { of links between NN }}{\# \text { max number of links NN }}=\frac{p k(k-1) / 2}{k(k-1) / 2}=p \\
C=p=\frac{\langle k\rangle}{n}
\end{gathered}
$$

- when $n \rightarrow \infty, \quad C \rightarrow 0$

Configuration model

Select a sequence of nodes with degreees
$D=\left\{k_{1}, k_{2}, k_{3} . . k_{n}\right\}: \quad \sum_{i} k_{i}=2 m$ to follow given distribution $P(k)$. For example: $11111222333 .$.

$$
P(k)=\frac{\#\left(k_{i}=k\right)}{2 m}
$$

Randomly select two nodes from the sequence and form an edge between them

Refernces

- On random graphs I, P. Erdos and A. Renyi, Publicationes Mathematicae 6, 290-297 (1959).
- On the evolution of random graphs, P. Erdos and A. Renyi, Publicaton of the Mathematical Institute of the Hungarian Academy of Sciences, 17-61 (1960)

