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Network models

Empirical network features:
Power-law (heavy-tailed) degree destribution
Small average distance (graph diameter)
Large clustering coefficient (transitivity)
Giant connected component, hierachical structure,etc

Generative models:
Random graph model (Erdos & Renyi, 1959)
"Small world" model (Watts & Strogatz, 1998)
Preferntial Attachement model (Barabasi & Albert, 1999)
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Random Graph models

Graph G{E ,V }, nodes n = |V |, edges m = |E |
Erdos and Renyi, 1959.
Random graph models

Gn,m, a randomly selected graph from the set of Cm
n(n−1)/2 graphs with

n nodes and m edges
Gn,p, each pair out of n(n − 1)/2 pairs of nodes is connected with
probability p, m - random number

〈m〉 = p
n(n − 1)

2

〈k〉 = 1
n

∑
i

ki =
2〈m〉
n

= p (n − 1) ≈ pn

ρ =
〈m〉

n(n − 1)/2
= p
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Random Graph models

Probability that i-th node has a degree ki = k

P(ki = k) = P(k) = C k
n−1p

k(1− p)n−1−k

(Bernoulli distribution)
pk - probability that connects to k nodes (has k-edges)
(1− p)n−k−1 - probability that does not connect to any other node
C k
n−1 - number of ways to select k nodes out of all to connect to

Limiting case of Bernoulli distribution, when n→∞ at fixed
〈k〉 = pn = λ

P(k) =
〈k〉ke−〈k〉

k!
=
λke−λ

k!

(Poisson distribution)
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Poisson Distribution

P(ki = k) =
λke−λ

k!
, λ = pn
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Phase transition

Consider Gn,p as a function of p
p = 0, empty graph
p = 1, complete (full) graph
There are exist critical pc , structural changes from p < pc to p > pc

Gigantic connected component appears at p > pc

Leonid E. Zhukov (HSE) Lecture 3 27.01.2013 6 / 18



Random graph model

p < pc p = pc
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Random graph model

p > pc p >> pc
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Phase transition

Let u – fraction of nodes that do not belong to GCC. The probability that
a node does not belong to GCC

u = P(k = 1) · u + P(k = 2) · u2 + P(k = 3) · u3... =

=
∞∑
k=0

P(k)uk =
∑
k=0

λke−λ

k!
uk = e−λeλu = eλ(u−1)

Let s -fraction of nodes belonging to GCC (size of GCC)

s = 1− u

1− s = e−λs

when λ→∞, s → 1
when λ→ 0, s → 0
(λ = pn)
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Phase transition

s = 1− e−λs

non-zero solution exists when (at s = 0):

λe−λs > 1

critical value:
λc = 1

λc = pcn = 1, pc =
1
n
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Phase transition

Leonid E. Zhukov (HSE) Lecture 3 27.01.2013 11 / 18



Phase transition

Graph G (n, p), for n→∞, critical value pc = 1/n
when p < pc , (〈k〉 < 1) there is no components with more than
O(ln n) nodes, largest component is a tree
when p = pc , (〈k〉 = 1) the largest component has O(n2/3) nodes
when p > pc , (〈k〉 > 1) gigantic component has all O(n) nodes

Critical value: 〈k〉 = pcn = 1- on average one neighbor for a node
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Threshold probabilities

Graph G (n, p)
Threshold probabilities when different subgraphs of g -nodes appear in a
random graph

pc ∼ n−g/(g−1), having a tree of order g
pc ∼ n−1, having a cycle of order g
pc ∼ n−2/(g−1), complete subgraph of order g

Barabasi, 2002
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Graph diameter

On average, the number of nodes s steps away from a node 〈k〉s = λs

If graph is a tree (GCC, around pc), λd ∼ n, d ∼ ln n
lnλ

P(dij > s + t + 1) - probability, that there is no edge between the
surfaces
P(dij > s + t + 1) = (1− p)λ

s+t
,

where λsλt total number of possible pairs from different groups
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Graph diameter

define l = s + t + 1
P(dij > l) = (1− p)λ

l−1
= (1− λ

n )
λl−1

lnP(dij > l) = λl−1 ln(1− λ
n ) = −

λl

n

P(dij > l) = exp (−λl

n )

Graph diameter is the smallest value l such that P(dij > l) = 0, i.e no
matter which pair of nodes we pick, there is zero chance to be
separated by greater distance, λl = an, should grow faster than n

d = min(l) = lna
lnλ + ln n

lnλ = A+ ln n
lnλ

Graph diameter when p ≥ pc (λ = 〈k〉 = pn):

d =
ln n
ln〈k〉
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Clustering coefficient

Clustering coefficient

C (k) =
#of links between NN

#max number of links NN
=

pk(k − 1)/2
k(k − 1)/2

= p

C = p =
〈k〉
n

when n→∞, C → 0
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Configuration model

Select a sequence of nodes with degreees
D = {k1, k2, k3..kn} :

∑
i ki = 2m to follow given distribution P(k). For

example: 1 1 1 1 1 2 2 2 3 3 3...

P(k) =
#(ki = k)

2m

Randomly select two nodes from the sequence and form an edge between
them
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