Network models: random graphs

Leonid E. Zhukov

School of Applied Mathematics and Information Science National Research University Higher School of Economics

27.01.2013

Empirical network features:

- Power-law (heavy-tailed) degree destribution
- Small average distance (graph diameter)
- Large clustering coefficient (transitivity)
- Giant connected component, hierachical structure,etc

Generative models:

- Random graph model (Erdos & Renyi, 1959)
- "Small world" model (Watts & Strogatz, 1998)
- Preferntial Attachement model (Barabasi & Albert, 1999)

Random Graph models

Graph $G{E, V}$, nodes n = |V|, edges m = |E|Erdos and Renyi, 1959. Random graph models

- $G_{n,m}$, a randomly selected graph from the set of $C_{n(n-1)/2}^m$ graphs with n nodes and m edges
- $G_{n,p}$, each pair out of n(n-1)/2 pairs of nodes is connected with probability p, m random number

$$\langle m \rangle = p \frac{n(n-1)}{2}$$

$$\langle k \rangle = \frac{1}{n} \sum_{i} k_{i} = \frac{2 \langle m \rangle}{n} = p (n-1) \approx pn$$

$$\rho = \frac{\langle m \rangle}{n(n-1)/2} = p$$

• Probability that *i*-th node has a degree $k_i = k$

$$P(k_i = k) = P(k) = C_{n-1}^k p^k (1-p)^{n-1-k}$$

(Bernoulli distribution) p^{k} - probability that connects to k nodes (has k-edges) $(1-p)^{n-k-1}$ - probability that does not connect to any other node C_{n-1}^{k} - number of ways to select k nodes out of all to connect to

• Limiting case of Bernoulli distribution, when $n \to \infty$ at fixed $\langle k \rangle = pn = \lambda$ $\langle k \rangle^k e^{-\langle k \rangle} = \lambda^k e^{-\lambda}$

$$P(k) = \frac{\langle k \rangle^{k} e^{-\langle k \rangle}}{k!} = \frac{\lambda^{k} e^{-\lambda}}{k!}$$

(Poisson distribution)

Poisson Distribution

Consider $G_{n,p}$ as a function of p

- p = 0, empty graph
- p = 1, complete (full) graph
- There are exist critical p_c , structural changes from $p < p_c$ to $p > p_c$
- $\bullet\,$ Gigantic connected component appears at $p>p_c$

Random graph model

 $p < p_c$ $p = p_c$

Random graph model

 $p > p_c$

 $p >> p_c$

Phase transition

Let u – fraction of nodes that do not belong to GCC. The probability that a node does not belong to GCC

$$u = P(k = 1) \cdot u + P(k = 2) \cdot u^{2} + P(k = 3) \cdot u^{3} \dots =$$

= $\sum_{k=0}^{\infty} P(k)u^{k} = \sum_{k=0}^{\infty} \frac{\lambda^{k}e^{-\lambda}}{k!}u^{k} = e^{-\lambda}e^{\lambda u} = e^{\lambda(u-1)}$

Let *s* -fraction of nodes belonging to GCC (size of GCC)

$$s = 1 - u$$

 $1 - s = e^{-\lambda s}$

when $\lambda \to \infty$, $s \to 1$ when $\lambda \to 0$, $s \to 0$ $(\lambda = pn)$

Phase transition

$$s = 1 - e^{-\lambda s}$$

non-zero solution exists when (at s=0): $\lambda e^{-\lambda s}>1$

critical value:

$$\lambda_c = 1$$
$$\lambda_c = p_c n = 1, \quad p_c = \frac{1}{n}$$

Graph G(n,p), for $n \to \infty$, critical value $p_c = 1/n$

- when $p < p_c$, $(\langle k \rangle < 1)$ there is no components with more than $O(\ln n)$ nodes, largest component is a tree
- when $p = p_c$, $(\langle k \rangle = 1)$ the largest component has $O(n^{2/3})$ nodes

• when $p > p_c$, $(\langle k \rangle > 1)$ gigantic component has all O(n) nodes

Critical value: $\langle k \rangle = p_c n = 1$ - on average one neighbor for a node

Threshold probabilities

Graph G(n, p)Threshold probabilities when different subgraphs of *g*-nodes appear in a random graph

•
$$p_c \sim n^{-g/(g-1)}$$
, having a tree of order g
• $p_c \sim n^{-1}$, having a cycle of order g
• $p_c \sim n^{-2/(g-1)}$, complete subgraph of order g

Barabasi, 2002

• On average, the number of nodes s steps away from a node $\langle k \rangle^s = \lambda^s$

- If graph is a tree (GCC, around p_c), $\lambda^d \sim n$, $d \sim \frac{\ln n}{\ln \lambda}$
- $P(d_{ij} > s + t + 1)$ probability, that there is no edge between the surfaces
- $P(d_{ij} > s + t + 1) = (1 p)^{\lambda^{s+t}}$, where $\lambda^s \lambda^t$ total number of possible pairs from different groups

• define
$$l = s + t + 1$$

•
$$P(d_{ij} > l) = (1 - p)^{\lambda^{l-1}} = (1 - \frac{\lambda}{n})^{\lambda^{l-1}}$$

 $\ln P(d_{ij} > l) = \lambda^{l-1} \ln(1 - \frac{\lambda}{n}) = -\frac{\lambda^{l}}{n}$
 $P(d_{ij} > l) = \exp(-\frac{\lambda^{l}}{n})$

• Graph diameter is the smallest value l such that $P(d_{ij} > l) = 0$, i.e no matter which pair of nodes we pick, there is zero chance to be separated by greater distance, $\lambda^{l} = an$, should grow faster than n

•
$$d = \min(I) = \frac{\ln a}{\ln \lambda} + \frac{\ln n}{\ln \lambda} = A + \frac{\ln n}{\ln \lambda}$$

• Graph diameter when $p \ge p_c$ ($\lambda = \langle k \rangle = pn$):

$$d = \frac{\ln n}{\ln \langle k \rangle}$$

• Clustering coefficient

$$C(k) = \frac{\#\text{of links between NN}}{\#\text{max number of links NN}} = \frac{pk(k-1)/2}{k(k-1)/2} = p$$
$$C = p = \frac{\langle k \rangle}{n}$$

• when $n \to \infty$, $C \to 0$

Select a sequence of nodes with degrees $D = \{k_1, k_2, k_3...k_n\}$: $\sum_i k_i = 2m$ to follow given distribution P(k). For example: 1 1 1 1 1 2 2 2 3 3 3...

$$P(k) = \frac{\#(k_i = k)}{2m}$$

Randomly select two nodes from the sequence and form an edge between them

- On random graphs I, P. Erdos and A. Renyi, Publicationes Mathematicae 6, 290–297 (1959).
- On the evolution of random graphs, P. Erdos and A. Renyi, Publicaton of the Mathematical Institute of the Hungarian Academy of Sciences, 17-61 (1960)