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Simulated annealing

@ Global optimization method (vs greedy strategies - local minimum)
@ Works for both continues and discrite optimization problems

@ Intuition from thermodynamics, physical annealing process

@ Algorithm:

generate trial point and evaluate function at that location.

accept new location if it reduces "energy" (improves solution)
accept some new location even not improving the solution

probability accepting non-improving location decreases with lowering
"temperture"
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Simulated annealing

@ Compute change of energy for a k-step AE, = E; — Ex_1:

o If AE, <0, accept the step

o if AE, > 0, accept the step with probability P(AE) = e~ 2E/ T«
@ Cooling schedule:
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Traveling salesman problem

Travelling salesman problem: given a list of cities and the distances
between each pair of cities, what is the shortest possible route that visits
each city exactly once and returns to the origin city? (NP-hard problem in
combinatorial optimization)

Simulated annealing algorithm:

@ Define energy cost function:

N
E = Z \/(X,‘+1 — Xi2)+(}/i+1 - yi)2

Select initial route (sequence of city labeles)

Iteratively imporve the route by trying local changes:
swap a pair of cities + reverse the section between them

always accept lower enegergy swap, sometimes higher enegery

reduce temperature with cooling schedule
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Traveling salesman problem
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MCMC connection

@ MCMC constructs Markov chain that generates random samples
distributed according to P(x)

@ Metropolis algorithm uses symmetric "candidate"distribution
Q(x, x*) = Q(x*, x)

@ Probabiity of "forward move"of the chain:

ey = min 1, 2]

e Consider Boltzman (Gibbs) distribution

1 x
P(x) = fe_$

@ Probability of move

(") —E(x)
a(x,x*) = min {1,eE - } = min [1,e*A7TE]
AE <0 - always move, AE > 0 move with probability exp (—4F)
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The Gibbs sampler

e Goal: get random samples from joint multivariate density p(xi,...x,) if
it is not known explicitely or hard to sample from

e Given conditional univatiate distributions p(x1|x2...xn), p(x2|x1...Xn),
P(Xn|X1. . Xn—1)
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@ Bayesian inference, posterior distributions
@ Approximate joint distribution (histogram), compute averages
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Bivariate case

@ joint bivariate distribution
p(x,y)
@ marginal distribution
= [ p(x, y)dy
= fp(X,y)dX
@ conditional probability
p(xly) = p(x,y)/p(y)
plylx) = p(x,y)/p(x)
° marginal from conditional distribution
= [ p(x|y)p(y)dy = Ey[p(x]y)]
= [ p(y|x) ( Jdx = Ep(x)[p(y[x)]
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Gibbs sampler: bivariate case

o Given: p(x|y), p(y|x)
@ Choose yp, t =0
@ do "sampler scan"
xt ~ p(x|ly = yt)
Yer1 ~ p(ylx = xt)
@ repeat k-times, Gibbs sequence (xo, yo), (x1, y1)---(Xk, Yk)
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Gibbs sampler

Iy I3
P(x)
o P ad)
5
(a) & ® "
gy g
(©) o @ o

Leonid Zhukov (HSE) Lecture 6

12.12.2013 10 / 14



Gibbs sampler

Algorithm: Gibbs sampler
Input: all marginals p(x;|x1..X;, Xi+1, Xn)
initialize x(© = (x,.x?), t =0

while t < T do

fori=1tondo

Xi(t+1 t+1) (t+1) (1) (t))

)~ p(X,'|X1( ses Xiq s Xiy s ey Xn
end
t=t+1

end

return {x% x!,..x"}
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Gibbs sampler
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MCMC connection

@ Metropolis-Hastings

a(x,x*) = min [1, m}

@ use conditional p(x|x*) as a candidate density Q(x|x*)
(xf,y) = (x*1,yf)

_ PO y)p(xElyt) _ p(F yE) p(x ) p(y)
p(Xt, yt)p(XH'l]yt) p(Xt, yt) p(yt) (Xt+1 t)

e MCMC algorithm with acceptance probability 1

=1
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