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Conditional probabilities

Joint probability distribution
P(x0, ..xn) = P(X0 = xo , ...,Xn = xn) = P(x)
random variable Xi takes value xi
Chain rule

P(x0, ...xn) = P(x0)P(x1|x0)P(x2|x1, x0).. = P(x0)
n∏

i=1

P(xi |x0, ..xi−1)

Markov property

P(x0, ...xn) = P(x0)P(x1|x0)P(x2|x1).. = P(x0)
n∏

i=1

P(xi |xi−1)

Independent variables

P(x0, ...xn) = P(x0)P(x1)P(x2).. =
n∏

i=0

P(xi )
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Markov Random Fileds

A Markov random field is set of random varibles Xi on the finite set of
sites S = {1..N} (lattice/network) with probability function satisfying
Markovian property relative to the neighborhood

P(Xi = xi |Xj = xj , j 6= i) = P(Xi = xi |Xj = xj , j ∈ N (i))

Undirected graphical model: nodes represent variables, edges represent
the dependence srtucture between random variables
Markov network represents joint probability distribution
Only neighboring sites interact with each other (local Markov property)
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Markov Random Fileds

N (X0) = {X1,X2,X3,X4}
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Cliques amd maiximal cliques

A clique of a graph is its complete subgraph

A maximal clique is a clique that is not a subset of another clique (can not
be extended by adding another vertex)
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Click factorizaton

{X0,X1,X2}, {X1,X3}, {X2,X5}, {X3,X4,X5,X6}
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Click factorization

Probability distribution factorizes with respect to a given undirected graph
if it can be written as

P(X ) =
1

Z

∏
c∈C

ψc(xc)

C - set of maximal cliques, c-maximal clique
ψc - factor potentials / clique potentials, real valued function
Z - normalization factor, partition function

Z =
∑
x∈X

∏
c∈C

ψc(xc)

if Vc(x) = − logψc(x)

P(X ) =
1

Z
e−

∑
c∈C Vc (xc )
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Markov chains as MRF

neighbours n − 1,n + 1

cliques = pairs
Joint probability

P(x) = P(x0)
N∏

n=1

P(xn|xn − 1) = P(x0) exp

{
N∑

n=1

logP(xn|xn−1)

}

Potential V (xn, xn−1) = − logP(xn|xn−1)
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Gibbs distribution

Gibbs distribution (measure)

P(X ) =
1

Z
e−βU(x)

U(x) - energy function, β - spatial smoothness parameter
partition function

Z =
∑
x

e−βU(x)

In statistical mechanics β = 1/kT , inverse temperature
Boltzman distribution
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Ising Model

Classical model of magnetizm (1D model solved by Ernst Ising in
1925)
one or two-dimensional lattices, spin takes values σi = ±1

U = −J
∑
<i ,j>

σiσj − H
∑
i

σi

Configuration probability

P(σ) =
1

Z
e−βU

J > 0 - ferromagnetic, J < 0 - antiferromagmetic

Leonid Zhukov (HSE) Lecture 3 21.11.2013 10 / 14



Graph separation

In an underected graph with disjoint subsets of nodes A, B, C if every path
from A to B inlcudes at least one node from C, then C separates A from B.
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Markov blanket

Markov blanket of a node is the (minimal) set of variables making the
given node independent of all the remaining nodes in the model;
The local Markov property referred to in the Hammersley-Clifford
theorem states that the neighbors of a node in a Markov random field
are a Markov blanket of that node in the graph. That is,
MB(Xi) = N(Xi);
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Hammersley - Clifford theorem

Given random vector X and underited graph with positive probability
distribution P(X ) > 0 for any realization of X , the following conditions are
equivalent:

P(X ) is a Gibbs distribution that factorizes according to the maximal
cliques in the graph
local Markov property:
P(Xi = xi |Xj = xj , j 6= i) = P(Xi = xi |Xj = xj , j ∈ N (i))

global Markov property:
If A, B, C are three disjoint subsets of X and C separates A from B,
then P(A|B, C) = P(A|C)
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Log-linear model

Any MRF can be written as log-linear model (logistics model)
For each state of each maximal clique introduce f (Xc) = {0, 1}
Potential function

ψc(xc) = exp


mc∑
j=1

wj fj(xc)


mc number of features in the clique

P(x) =
1

z

∏
C

exp


mc∑
j=1

wj fj(xc)

 =
1

z
exp

∑
C

mc∑
j=1

wj fj(xc)


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